• 제목/요약/키워드: PROPULSIVE FORCE

검색결과 67건 처리시간 0.019초

다운증후군 아동의 수직점프 동작 수행 시 지면반력과 근육활동의 규명 (Ground Reaction Force and Muscle activity in Children with Down Syndrome during Vertical Jump)

  • 유연주;임비오;김석범;남기정;최범권;김민회
    • 한국운동역학회지
    • /
    • 제18권1호
    • /
    • pp.107-115
    • /
    • 2008
  • 본 연구의 목적은 다운증후군 아동들의 점프와 착지 능력 향상을 위해 다운증후군 아동의 점프와 착지 동작 수행 시 지면반력과 근육 활동을 규명하는 것이다. 다운증후군 아동 6명과 정상아동 1명이 수직 점프 후 착지 동작을 수행하였으며, 대퇴이두근, 대퇴직근, 전경골근 및 비복근의 근육활동과 지면반력이 분석되었다. 다운증후군 아동들은 점프 동작 수행 시 추진구간에서 비복근을 제대로 사용하지 못하는 것으로 나타났다. 이러한 비복근의 소극적인 활동은 다운증후군 아동의 발 앞꿈치 이지 전 0.3초 동안 충격량이 정상아동에 비해 작게 나타난 결과와 일치한다. 다운증후군 아동의 제 2 수직지면반력은 정상 아동에 비해 늦게 나타나, 다운증후군 아동들은 건강한 아동에 비해 무릎을 더 많이 굴곡시켜 착지했음을 알 수 있다. 다운증후군 아동의 제 1 및 제 2 수직지면반력, 다운증후군 아동 D3을 제외한 다운증후군 아동의 제 2부하율은 정상아동 보다 작게 나타났다. 운동기술이 저하된 다운증후군 아동은 착지 시 지면으로부터 발생되는 충격을 흡수하는 능력이 정상아동에 비해 떨어지는 것으로 나타났다.

Kinematic Comparisons of the Tsukahara Vault between a Top-level Athlete and Sublevel Collegiate Athletes

  • Park, Cheol-Hee;Kim, Young-Kwan;Back, Chang-Yei
    • 한국운동역학회지
    • /
    • 제26권1호
    • /
    • pp.71-82
    • /
    • 2016
  • Objective: The purpose of this study was to investigate kinematic comparisons of Tsukahara vault in gymnastics between a top-level athlete and sublevel collegiate athletes in order to obtain information on key biomechanical points for successful Tsukahara vaults. Methods: An Olympic gold medalist (height, 160 cm; weight, 52 kg; age, 25 years) and five sublevel collegiate gymnasts (height, $168.2{\pm}3.4cm$; weight, $59.6{\pm}3.1kg$; age, $23.2{\pm}1.6years$) participated in this study. They repeatedly performed Tsukahara vaults including one somersault. Fourteen motion-capturing cameras were used to collect the trajectories of 26 body markers during Tsukahara vaults. Event time, displacement and velocity of the center of mass, joint angles, the distance between the two hands on the horse, and averaged horizontal and vertical impact forces were calculated and compared. Results: The top-level athlete showed a larger range of motion (ROM) of the hip and knee joints compared to sublevel collegiate athletes during board contact. During horse contact, the top-level athlete had a narrow distance between the two hands with extended elbows and shoulders in order to produce a strong blocking force from the horse with a shorter contact time. At the moment of horse take-off, reactive hip extension of the top-level athlete enhanced propulsive take-off velocity and hip posture during post-flight phase. Conclusion: Even though a high velocity of the center of mass is important, the posture and interactive action during horse contact is crucial to post-flight performance and the advanced performance of Tsukahara vaults.

2005 세계 쇼트트랙 스피드 여자 500m 스피드 스케이팅 출발구간에 대한 운동학적 분석 (The Kinematical Analysis of female 500m Sprint Start in 2005 World Short Track speed Skating Championship)

  • 이종훈;백진호
    • 한국운동역학회지
    • /
    • 제15권4호
    • /
    • pp.169-179
    • /
    • 2005
  • In the 500m short track speed skating, the matter of who reaches the first corner first can important factor since each competitor races with all speed from the start to the first line. A filed study was attempted to kinematical estimation six female foreign skaters, who participated in the 500m female final round competition, and two Korea skates during the World Short track Skating Championship. The three dimensional motion analysis with DLT method was executed using four video cameras for analyzing the actual competition situation. In point of analyzing the actual competition situation, it is expected that skaters and coaches the effective informations, and the following conclusions are drawn; The elapsed time by phase in start motion of the foreign skaters appeared shorter those of Korea skaters, so the start training of Korea skaters should be strengthed. Also the displacement of C.G in the foreign skaters appeared shorter displacement than those of Korea skaters. Especially in the starting position, the foreign skaters are superior to Korea skaters in displacement of first(left) and next following stroke(right). The velocity of C.G and maximum velocity of skate blade of foreign skaters art faster than those of Korea skaters. And the foreign skaters show the superior early velocity change. Both of leaning body angle, and left and knee angle of the foreign skaters lead to positive point of having the propulsive force in the early starting position. Observing in the most prominent feature of foreign and Korea skaters in start phase, foreign skaters skate quickly the third stroke. These features of Korea skaters would appear disadvantage of location selection in entering the coner course.

DACS형 직격요격비행체의 비선형 가속도 조종루프 설계 (Nonlinear Acceleration Controller Design for DACS Type Kill Vehicle)

  • 이창훈;김태훈;전병을
    • 한국추진공학회지
    • /
    • 제19권3호
    • /
    • pp.54-64
    • /
    • 2015
  • 본 논문에서는 DACS(Divert and Attitude Control System)를 장착한 KV(kill vehicle)의 비선형 가속도 조종루프 설계에 대해서 다룬다. ACS(Attitude Control System)는 받음각을 0으로 유지시키는 추력을 유발시키며, 받음각 제어를 위해 ACS를 제어명령으로 사용하는 궤환선형화 기반 비선형 받음각 조종루프를 제안한다. 받음각이 0인 조건에서는 비행경로각과 자세각이 일치하기 때문에 DCS(Divert Control System)는 유도루프에서 요구하는 측방향 가속도를 직접 생성하도록 제어한다. 이러한 방식에서는 추력에 의한 공력간섭 효과를 최소화 시킬 수 있으며, DCS와 ACS의 운용로직을 단순화 시킬 수 있다. 수치 시뮬레이션을 통해 제안한 기법의 성능을 검증한다.

보행과 한발·두발 수직점프 수행 시 내측비복근 근-건 복합체와 근섬유다발의 길이 변화 패턴의 차이 (Differences in the Length Change Pattern of the Medial Gastrocnemius Muscle-Tendon Complex and Fascicle during Gait and One-legged and Two-legged Vertical Jumping)

  • 이해동;한보람;김진선;오정훈;조한엽;윤소야
    • 한국운동역학회지
    • /
    • 제25권2호
    • /
    • pp.175-182
    • /
    • 2015
  • Objective : The purpose of this study was to investigate difference in fascicle behavior of the medial gastrocnemius during the locomotion with varying intensities, such as gait and one-legged and two-legged vertical jumping. Methods : Six subjects (3 males and 3 females; age: $27.2{\pm}1.6yrs.$, body mass: $62.8{\pm}9.8kg$, height: $169.6{\pm}8.5cm$) performed normal gait (G) at preferred speed and maximum vertical jumping with one (OJ) and two (TJ) legs. While subjects were performing the given tasks, the hip, knee and ankle joint motion and ground reaction force was monitored using a 8-infrared camera motion analysis system with two forceplates. Simultaneously, electromyography of the triceps surae muscles, and the fascicle length of the medial gastrocnemius were recorded using a real-time ultrasound imaging machine. Results : Comparing to gait, the kinematic and kinetic parameters of TJ and OJ were found to be significantly different. Along with those parameters, change in the medial gastrocnemius (MG) muscle-tendon complex (MTC) length ($50.57{\pm}6.20mm$ for TJ and $44.14{\pm}5.39mm$ for OJ) and changes in the fascicle length of the MG ($18.97{\pm}3.58mm$ for TJ and $20.31{\pm}4.59mm$ for OJ) were observed. Although the total excursion of the MTC and the MG fascicle length during the two types of jump were not significantly different, however the pattern of length changes were found to be different. For TJ, the fascicle length maintained isometric longer during the propulsive phase than OJ. Conclusion : One-legged and two-legged vertical jumping use different muscle-tendon interaction strategies.

철봉운동 Deff 동작의 운동학적 분석 (Kinematic Analysis of Deff Motion in High Bars)

  • 백진호
    • 한국운동역학회지
    • /
    • 제16권1호
    • /
    • pp.55-63
    • /
    • 2006
  • The purpose of this study is to prove the kinematical characteristics of Deff motion, the high bar performance, in terms of flying phases so that we can provide basic sources for improving gymnastic performance. To do this, we selected and analyzed the performance of two athletes who did Deff motion in the high bar competition of male artistic gymnastic in the 22nd Universiade 2003 Daegu. We drew the conclusions from the kinematical factors that were came out through analyzing three-dimensional cinematography of the athletes' movements, by using a high speed video camera. To make a successful performance, a performer releases the bar at a height of a high bar vertically and at a height of 82cm horizontally, and the flying performance should be made without moving forward, as maintaining the proper balance, in order to rise over 118cm high during the flying phase. When the performer is releasing the bar, an increase of the vertical speed in the center of the body and extension of a knee joint and a hip joint contribute to increasing a flying height. And when the moving body is twisted, leaning to left side is caused by the winding movement of a knee joint, which causes an unstable bar grasp. To grasp the bar stably, just before releasing the performer should gain propulsive force from twisting rotation through increasing the speed of shoulder rotation. And before the peak point, the performer should make sure of a body rotation distance over $164^{\circ}$ so that he or she can do an aerial rotary performance smoothly. When grasping the high bar, the center of the body should be above the bar and the angle of shoulder rotation should be maintained close to $540^{\circ}$ simultaneously. he high point performance(S1) has more speed on an ascending phase and less speed on a descending phase than the low point performance (S2). At the peak point, both the rotation angle of the body and that of the shoulder in high point performance are big as well. In conclusion, it is shown that a performer can make a jump toward the high bar easily with the body straight because the performer can hold the upper part of the body erect early in a descending phase.

아킬레스건 파열 수술 후 걷기 및 달리기 운동역학적 분석 (Biomechanical Analysis of Walking and Running after a Surgically Repaired Achilles Tendon Rupture)

  • Heo, Jeong;Park, Sang-Kyoon
    • 한국운동역학회지
    • /
    • 제31권4호
    • /
    • pp.241-248
    • /
    • 2021
  • Objective: The purpose of this study was to investigate the difference in muscle strength, kinematics, and kinetics between injured and non-injured sides of the leg after Achilles Tendon Rupture surgery during walking and running. Method: The subjects (n=11; age = 30.63 ± 5.69 yrs; height = 172.00 ± 4.47 cm; mass = 77.00 ± 11.34 kg; time lapse from surgery = 29.81 ± 10.27 months) who experienced Achilles Tendon Rupture (ATR) surgery participated in this study. The walking and running trials were collected using infrared cameras (Oqus 300, Qualisys, Sweden, 100 Hz) on instrumented treadmill (Bertec, U.S.A., 1,000 Hz) and analyzed by using QTM (Qualisys Track Manager Ver. 2.15; Qualisys, U.S.A). The measured data were processed using Visual 3D (C-motion Inc., U.S.A.). The cutoff frequencies were set as 6 Hz and 12 Hz for walking and running kinematics respectively, while 100 Hz was used for force plate data. Results: In ATR group, muscle strength there were no difference between affected and unaffected sides (p> .05). In kinematic analysis, subjects showed greater ROM of knee joint flexion-extension in affected side compared to that of unaffected side during walking while smaller ROM of ankle dorsi-plantar and peak knee flexion were observed during running (p< .05). In kinetic analysis, subjects showed lower knee extension moment (running at 2.2 m/s) and positive ankle plantar-flexion power (running at 2.2 m/s, 3.3 m/s) in affected side compared to that of unaffected side (p< .05). This lower positive ankle joint power during a propulsive phase of running is related to slower ankle joint velocity in affected side of the subjects (p< .05). Conclusion: This study aimed to investigate the functional evaluation of the individuals after Achilles tendon rupture surgery through biomechanical analysis during walking and running trials. Based on the findings, greater reduction in dynamic joint function (i.e. lower positive ankle joint power) was found in the affected side of the leg compared to the unaffected side during running while there were no meaningful differences in ankle muscle strength and walking biomechanics. Therefore, before returning to daily life and sports activities, biomechanical analysis using more dynamic movements such as running and jumping trials followed by current clinical evaluations would be helpful in preventing Achilles tendon re-rupture or secondary injury.