• Title/Summary/Keyword: PREIMPLANTATION EMBRYO

Search Result 195, Processing Time 0.022 seconds

Differential Expression of Glucose Transporter Gene in Mouse Early Embryos (생쥐 초기배아의 Glucose Transporter유전자 발현 양상에 관한 연구)

  • Youm, Hye-Won;Byun, Hye-Kyung;Song, Gyun-Ji;Kim, Hae-Kwon;Lee, Ho-Joon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.25 no.1
    • /
    • pp.77-86
    • /
    • 1998
  • The uptake of glucose for metabolism and growth is essential to most animal cells and is mediated by glucose-transporter (GLUT) proteins. The aim of this study was to determine which class of glucose transporter molecules was responsible for uptake of glucose in the mouse early embryo and at which stage the corresponding genes were expressed. In addition, co-culture system with vero cell was used to investigate the effect of the system on GLUT expression. Two-cell stage embryos were collected from the superovulated ICR female and divided into 3 groups. As a control, embryos were cultured in 0.4% BSA-T6 medium which includes glucose. For the experimental groups, embryos were cultured in either co-culture system with vero cells or glucose-free T6 medium supplemented with 0.4% BSA and pyruvate as an energy substrate. 2-cell to blastocyst stage embryos in those groups were respectively collected into microtubes (50 embryos/tube). Total RNA was extracted and RT-PCR was performed. The products were analysed after staining ethidium bromide by 2% agarose gel electrophoresis. Blastocysts were collected from each group at l20hr after hCG injection. They were fixed in 2.5% glutaraldehyde, stained with hoechst, and mounted for observation. In control, GLUT1 was expressed from 4-cell to blastocyst. GLUT2 and GLUT3 were expressed in morula and blastocyst. GLUT4 was expressed in all stages. When embryos were cultured in glucose-free medium, no significant difference was shown in the expression of GLUT1, 2 and 3, compared to control. However GLUT4 was not expressed until morular stage. When embryos were co-cultured with vero cell, there was no significant difference in the expression of GLUT1, 2, 3 and 4 compared to control. To determine cell growth of embryos, the average cell number of blastocyst was counted. The cell number of co-culture ($93.8{\pm}3.1$, n=35) is significantly higher than that of control and glucose-free group ($76.6{\pm}3.8$, n=35 and $68.2{\pm}4.3$, n=30). This study shows that the GLUT genes are expressed differently according to embryo stage. GLUTs were detectable throughout mouse preimplantation development in control and co-culture groups. However, GLUT4 was not detected from 2- to 8-cell stage but detected from morula stage in glucose-free medium, suggested that GLUT genes are expressed autocrinally in the embryo regardless of the presence of glucose as an energy substrate. In addition, co-culture system can increase the cell count of blastocyst but not improve the expression of GLUT. In conclusion, expression of GLUT is dependent on embryo stage in preimplantation embryo development.

  • PDF

Study on the sexing of preimplantation mouse embryo exposed to H-Y antisera II. Sexing of mouse embryos by immunofluorescence assay (H-Y항체에 의한 생쥐초기배의 성판별에 관한 연구 II. 간접면역형광측정법에 의한 성판별)

  • 양부근;장정순;김정익
    • Korean Journal of Animal Reproduction
    • /
    • v.12 no.1
    • /
    • pp.37-41
    • /
    • 1988
  • These studies were carried out to examine the sex of preimplantation mouse embryo. For the investigation of sex-ration of mouse embryos, morula and blastocysts stage embryos treated with H-Y antiserum (10%, v/v) and FITC anti-mouse-IgG were divided into the positive and negative embryos. Positive and negative identified embryos were observed the viability according to the in vitro cultured and the sex ratio was also investigated by chromosomal analysis. The results obtained in these studies were summarized as follows: 1. Two hundred sixty-seven recovered embryos of morula or blastocyst stage were incubated in medium containing H-Y antiserum and FITC anti-mouse-IgG. Positively or negatively identified embryos were 139 and 128. This trend indicated the approximal sex ratio was 1:1. 2. Sex ratio was measured using the embryos treated with indirect immunofluorescence assay to examine the relationship between embryo developmental stage and sex ratio. Sex ratio of morula stage embryos was 45.2% positive and 54.8% negative, on the other hand, the ratio switched to 56.4% positive and 43.6% negative embryo in blastocyst stage. 3. Fourty-seven positive and 57 negative embryos were obtained out of 104 morula stage embryos treated with indirect immunofluorescence assay. Survived positive or negative embryos during in vitro culture were 42 and 49, respectively out of 47 and 57 embryos. 4. The numbers of negative and positive embryos were 171 and 92 out of 163 blastocyst embryos which were incubated in the medium containing H-Y antiserum and FITC anti-mouse-IgG. The result of karyotype test showed the successful rate of sexing embryo is positive and negative embryos was63.0% (58/92) and 62.0% (44/71). The final female to male ratio within 58 positive embryos was 22.7:77.6, and the ratio of the 44 negative embryos was 77.3:22.7.

  • PDF

Expression of DNA Methyltransferase Transcripts in The Oocytes and Preimplantation Embryos in Mouse (생쥐 난자와 착상전 초기배아에서 DNA 메틸전이효소 전사물의 발현)

  • 김종월;이양한;강승호;한성원;전일경;김성례;김문규
    • Development and Reproduction
    • /
    • v.2 no.2
    • /
    • pp.197-203
    • /
    • 1998
  • DNA methylation seems to play an important regulatory role in gene expression and cell differentiation during postimplantation embryonic development. However, the significance of DNA methylation which is maintained by the DNA MTase during preimplantation embryonic development, is not fully understood. In order to study the role of DNA methylation in the preimplantation embryos, the expression of DNA MTase transcripts was monitored in the oocytes and preimplantation embryos. The mRNA of DNA MTase was detected in the oocytes and pleimplantation embryos. The relative mRNA levels of DNA MTase were high from the stages of GV-oocytes and pronuclear embryos, and thereafter decreased gradually. By the treatment of $\alpha$-amanitin, it was confirmed that the transcripts presented in pronuclear embryos was derived from the maternal genome. The presence of transcripts of DNA MTase in the oocytes and pronuclear embryos suggests that the maintenance of DNA methylation may be necessary and seems to play an important role in gene expression and cell differentiation during preimplantation embryonic develop-ment in mouse.

  • PDF

Expression of IGF-1 and Its Receptor Genes in the Oocytes and Preimplantation Embryos in Mouse (생쥐 난자와 착상전 초기배아에서 IGF-1과 IGF-1 수용체 유전자 발현)

  • 김종월;김성례;윤현수;이정헌;채영규;김문규
    • Development and Reproduction
    • /
    • v.3 no.1
    • /
    • pp.69-74
    • /
    • 1999
  • Insulin-like growth factors (IGF-1 and IGF-2) play an important regulatory role in premplantation embryonic development. To study the role of IGF-1 during premplantation embryonic development in mouse, the presence of mRNA transcripts for IGF-1 and IGF-lR in the oocytes and preimplantation embryos was examined. In this study, the transcripts of IGF-1 was detected in oocytes using primers for IGF-1. The PCR products were identified by Msp I restriction enzyme digest. We revealed that the transcripts of IGF-1 and IGF-1R were presented in the oocytes and preimplantation embryos. The highest mRNA levels in GV stage oocytes were decreased at 4- or 8-cell stage and then reincreased upto blastocyst. The presence of IGF-1 and IGF-lR in GV-oocytes suggests that the transcripts in the early stage embryos were derived from maternal genome. Additionally, the presence of IGF-1 and IGF-lR in the oocytes and preimplantation embryos suggests that IGF-1 plays an autocrine role during preimplantation embryonic development through IGF-lR as a signalling pathway.

  • PDF

An update of preimplantation genetic diagnosis in gene diseases, chromosomal translocation, and aneuploidy screening

  • Chang, Li-Jung;Chen, Shee-Uan;Tsai, Yi-Yi;Hung, Chia-Cheng;Fang, Mei-Ya;Su, Yi-Ning;Yang, Yu-Shih
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.38 no.3
    • /
    • pp.126-134
    • /
    • 2011
  • Preimplantation genetic diagnosis (PGD) is gradually widely used in prevention of gene diseases and chromosomal abnormalities. Much improvement has been achieved in biopsy technique and molecular diagnosis. Blastocyst biopsy can increase diagnostic accuracy and reduce allele dropout. It is cost-effective and currently plays an important role. Whole genome amplification permits subsequent individual detection of multiple gene loci and screening all 23 pairs of chromosomes. For PGD of chromosomal translocation, fluorescence $in-situ$ hybridization (FISH) is traditionally used, but with technical difficulty. Array comparative genomic hybridization (CGH) can detect translocation and 23 pairs of chromosomes that may replace FISH. Single nucleotide polymorphisms array with haplotyping can further distinguish between normal chromosomes and balanced translocation. PGD may shorten time to conceive and reduce miscarriage for patients with chromosomal translocation. PGD has a potential value for mitochondrial diseases. Preimplantation genetic haplotyping has been applied for unknown mutation sites of single gene disease. Preimplantation genetic screening (PGS) using limited FISH probes in the cleavage-stage embryo did not increase live birth rates for patients with advanced maternal age, unexplained recurrent abortions, and repeated implantation failure. Polar body and blastocyst biopsy may circumvent the problem of mosaicism. PGS using blastocyst biopsy and array CGH is encouraging and merit further studies. Cryopreservation of biopsied blastocysts instead of fresh transfer permits sufficient time for transportation and genetic analysis. Cryopreservation of embryos may avoid ovarian hyperstimulation syndrome and possible suboptimal endometrium.

Comparison of the Efficiency between Slow Freezing and Vitrification Method for Cryopreservation of Human Embryos (인간 수정란의 완만 동결과 유리화 동결의 비교)

  • Kim, Eun-Kuk;Kim, Mi-Yeon;Son, Sun-Mi;Kim, Dong-Won
    • Journal of Embryo Transfer
    • /
    • v.23 no.1
    • /
    • pp.19-24
    • /
    • 2008
  • The purpose of this study was to compare the efficiency of slow freezing with that of vitrification method for the cryopreservation of human embryos. Human embryos were derived from in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) and the mixed solution of propanedial (1.5, 1.0, 0.5M PROH) and sucrose (0.1M), ethylene glycol (7.5, 15%), dimethyl sulfoxide (7.5, 15% DMSO), sucrose (0.5, 1.0M) and SPS (Serum Protein Substitute) was used for a cryoprotectant for slow freezing and vitrification solution, respectively. Rates of recovery after thawing, morphological normality, post-thaw viability, arrest, morphological abnormality and preimplantation development were compared between two protocols. After freezing-thawing, recovery and survial rate of slow freezing was (88.6% and 73.4%), whereas vitrification was (99.2% and 96.2%) (p<0.05). The arrest rate of slow freezing was significantly lower compared with those of vitrification(8.7% vs 29.9%) (p<0.05). Preimplantation development to the 2-cell (83.8% vs 67.7%), 4-cell (69.0% vs 47.2%) and 8-cell (62.4% vs 37.8%) stages 24, 48 and 72 h after thawing, respectively, were higher in the slow freezing than the vitrification. After slow freezing and vitrification of human embryo at 2-8cell stage, the rate of recovery rate, survival rate and partial damage rate were 92.0% vs 100%, 80.4% vs 96.2% and 52.2% vs 19.0%, respectively. And partial damage rate was significantly lower than those of slow freezing method (p<0.05). These results demonstrate that a slow freezing using PROH is more efficient than a vitrification for cryopreserving the human zygotes, although the vitrification yielded better recovery, survival and partial damage of frozen-thawed 2-8 cell stage embryos than slow freezing method.

Prediction of Developmental Ability of In Vitro Fertilized Porcine Embryos by Analysis of Early Cleavage Pattern (체외수정 돼지 배아의 초기 분할 양상 분석에 의한 발달능 예측)

  • Jeon, Yu-Byeol;Biswas, Dibyendu;Yoon, Ki-Young;Hyun, Sang-Hwan
    • Journal of Embryo Transfer
    • /
    • v.24 no.1
    • /
    • pp.65-69
    • /
    • 2009
  • The aim of the present study was to investigate the cleavage pattern, its developmental ability and apoptosis of porcine embryo in vitro. Morphology data on a total of 919 embryos were analyzed retrospectively. Forty-eight hours after insemination, embryos were classified into five groups based on the cleavage state as follows; 1 cell, 2 cell, 4 cell, 5 to 8 cell and fragmentation. These groups were cultured another 120 hours and then evaluated for blastocyst formation. Blastocyst formation rates were significantly higher in 4 cell (42.5%) and 5 to 8 cell (48.6%) cleaving groups than in other groups (p<0.05). On the other hand, 2 cell and fragmentation groups produced 4.9% and 3,9% blastocysts, respectively. And we could verify that in the event of 2 cell block and fragmentation of embryo. To analyze the apoptotic frequency in preimplantation development of porcine IVF embryos, all cells of each blastocyst were performed by TUNEL assay. There were no significantly differences in the total cell numbers of embryos and apoptotic cell rate in blastocysts among the each classified groups. Data suggest that 4 cell and 5 to 8 cell cleaving embryos at 48 hour after insemination have high developmental competence, and may be an useful parameter to predict the development of preimplantation embryos and to study using preimplanation embryonic research.

Addition of interleukin-6 to mouse embryo culture increases blastocyst cell number and influences the inner cell mass to trophectoderm ratio

  • Kelley, Rebecca L;Gardner, David K
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.44 no.3
    • /
    • pp.119-125
    • /
    • 2017
  • Objective: In vitro culture of preimplantation embryos is improved by grouping embryos together in a drop of media. Individually cultured embryos are deprived of paracrine factors; with this in mind, we investigated whether the addition of a single embryo-secreted factor, interleukin-6 (IL-6), could improve the development of individually cultured embryos. Methods: Mouse embryos were cultured individually in $2{\mu}L$ of G1/G2 media in 5% oxygen and supplemented with a range of doses of recombinant mouse or human IL-6. Results: Mouse IL-6 increased hatching at doses of 0.01 and 10 ng/mL compared to the control (93% and 93% vs. 78%, p< 0.05) and increased the total number of cells at a dose of 0.1 ng/mL compared to the control ($101.95{\pm}3.36$ vs. $91.31{\pm}3.33$, p< 0.05). In contrast, the highest dose of 100 ng/mL reduced the total number of cells ($79.86{\pm}3.29$, p< 0.05). Supplementation with human IL-6 had a different effect, with no change in hatching or total cell numbers, but an increase in the percentage of inner cell mass per embryo at doses of 0.1, 1, and 100 ng/mL compared to the control ($22.9%{\pm}1.1%$, $23.3%{\pm}1.1%$, and $23.1%{\pm}1.1%$ vs. $19.5%{\pm}1.0%$, p< 0.05). Conclusion: These data show that IL-6 improved mouse embryo development when cultured individually in complex media; however, an excess of IL-6 may be detrimental. Additionally, these data indicate that there is some cross-species benefit of human IL-6 for mouse embryos, but possibly through a different mechanism than for mouse IL-6.