• Title/Summary/Keyword: PREFERRED WALKING SPEED

Search Result 24, Processing Time 0.018 seconds

Relationships Between Cognitive Function and Gait-Related Dual-Task Interference After Stroke

  • Kim, Jeong-Soo;Jeon, Hye-Seon;Jeong, Yeon-Gyu
    • Physical Therapy Korea
    • /
    • v.21 no.3
    • /
    • pp.80-88
    • /
    • 2014
  • Previous studies have reported that decreased cognitive ability has been consistently associated with significant declines in performance of one or both tasks under a dual-task walking condition. This study examined the relationship between specific cognitive abilities and the dual-task costs (DTCs) of spatio-temporal gait parameters in stroke patients. The spatio-temporal gait parameters were measured among 30 stroke patients while walking with and without a cognitive task (Stroop Word-Color Task) at the study participant's preferred walking speed. Cognitive abilities were measured using Computerized Neuropsychological Testing. Pearson's correlation coefficients (r) were calculated to quantify the associations between the neuropsychological measures and the DTCs in the spatio-temporal gait parameters. Moderate to strong correlations were found between the Auditory Continuous Performance test (ACPT) and the DTCs of the Single Support Time of Non-paretic (r=.37), the Trail Making A (TMA) test and the DTCs of Velocity (r=.71), TMA test and the DTCs of the Step Length of Paretic (r=.37), TMA test and the DTCs of the Step Length Non-paretic (r=.36), the Trail Making B (TMB) test and the DTCs of Velocity (r=.70), the Stroop Word-Color test and the DTCs of Velocity (r=-.40), Visual-span Backward (V-span B) test and the DTCs of Velocity (r=-.41), V-span B test and the DTCs of the Double Support Time of Non-paretic (r=.38), Digit-span Forward test and the DTCs of the Step Time of Non-paretic (r=-.39), and Digit-span Backward test and the DTCs of the Single Support Time of Paretic (r=.36). Especially TMA test and TMB test were found to be more strongly correlated to the DTCs of gait velocity than the other correlations. Understanding these cognitive features will provide guidance for identifying dual- task walking ability.

The Relationships among Gait Parameters and Senior Fitness Variables in Korean Elderly People (노인 체력 측정 결과와 보행 특성의 관계)

  • Joo, Ji-Yong;Hwang, Yeon-hee;Kim, Young-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.208-215
    • /
    • 2020
  • This study investigated the relationship among gait variables and physical fitness variables for Korean elderly people. Two hundred elderly people aged 65 to 85, (100 men and 100 women) participated in this study. They performed senior fitness test consisting of 6 tests, 3 additional physical tests (vertical jump, one leg stand, and grip force), body composition measures, and gait test. The gait test used shoes having an inertia measurement device in the outer-soles. The results indicated that the stride length, 6-min walking, lean body mass, and dumbbell curls were significantly affected by age (the above 75 group vs. the below 75 group). Among 33 measured parameters, the principal component analysis (PCA) revealed five PCs such as gait characteristics, physical features, gait variability, and fitness levels. In addition, the correlation analysis showed that the preferred walking speed was significantly, positively associated with stride length and single support time, whereas it was negatively associated with double support time and gait variability.(Ed note: please confirm my modification) In conclusion, sarcopenia should be avoided in elderly people, and resistance exercise is highly recommended to help elderly people maintain their gait ability.

Biomechanical Analysis of Elderly Fall Related Risk Factors using Downhill Walking on Treadmill (트레드밀 내리막 보행을 이용한 노인 낙상관련 위험요인의 운동역학적 분석)

  • Woo, Jeong-Hyun;Park, Sang-Kyoon
    • 한국체육학회지인문사회과학편
    • /
    • v.55 no.2
    • /
    • pp.643-655
    • /
    • 2016
  • The purpose of this study was to investigate biomechanical differences between young and old adults during downhill walking on a treadmill in order to understand the mechanisms of elderly falls. Eighteen healthy young females(YG: yrs: 21.17±1.5) and eighteen healthy old females(OG: yrs: 66.67±1.33) participated in this study. They were asked to walk at their preferred speed on a treadmill at level, 7.5° and 15° decline. OG walked more wobbly in the medial and lateral directions than YG(p<.05). As slope got steeper, OG had smaller ROM(range of motion) of ankle and knee joints compared with YG. However, there was no difference in ROM of the hip between OG and YG, but maximum extension angle of OG was smaller compared with YG(p<.05). Smaller extensor moment was generated on OG during downhill walking(p<.05). It was hypothesized that more risk factors would be found on older people compared to young people during downhill. However, older people actually walks with a safer strategy compared to young people during downhill. Finally, current findings about biomechanical characteristics of elderly walking would provide useful fundamental information for a follow-up study regarding the prevention of elderly fall during their daily life.

Comparison of Plantar Pressure and Contact Time on Gait between the Korean Young and the Elderly Women

  • Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.19 no.5
    • /
    • pp.602-607
    • /
    • 2017
  • This study was undertaken to compare the gait characteristics between the Korean elderly and young adults, we measured the plantar pressure and contact time of gait with barefoot along a walkway at their preferred walking speed. The results indicate that older people exhibited significantly less plantar pressure than young adult in all 3 regions (FF, MF and RF) and significantly less time % on the initial contact phase (ICP), forefoot push-off phase (FFPOP) and significantly more % forefoot contact phase (FFCP) and foot flat phase (FFP). The converted plantar pressure value to percentage, it showed more pressure in forefoot (FF) in the elderly person than the young adults. It could be explained that the forward shifting in plantar pressure are associated with a more flexed posture of elderly such as actual stabilizing fearrelated adaptations. Longer total foot contact time in the elderly means that the old people show the decreased gait velocity. In other words, lower velocity was found to be associated with pre-existing fear of falling. With longer contact time and slower stepping movement, the elderly become more unstable. With these findings, it could be confirmed that there were significant changes in foot characteristics which contribute to alter the plantar pressure and contact time during gait with advancing age. Further research is required to establish possible links to risk of falling and development of footwear in the elderly adults.