• Title/Summary/Keyword: PPy

Search Result 212, Processing Time 0.035 seconds

The Influence of Carbonization Temperature and KOH Activation Ratio on the Microporosity of N-doped Activated Carbon Materials and Their Supercapacitive Behaviors

  • Son, Yeong-Rae;Heo, Young-Jung;Cho, Eun-A;Park, Soo-Jin
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.267-275
    • /
    • 2018
  • A facile method for the preparation of nitrogen-doped microporous carbon via the pyrolysis of poly(vinylidene fluoride) (PVDF) using polypyrrole (PPy) as a selective nitrogen source was developed. A PVDF/PPy-800 sample (carbonized at $800^{\circ}C$) with a 1:0.5 ratio of PVDF and PPy exhibited the highest micropore volume. The activated microporous carbon materials obtained from PVDF/PPy-800 prepared at $800^{\circ}C$ with KOH possessed a large specific surface area and narrow pore-size distribution. They were characterized using $N_2$ adsorption at 77 K and argon (Ar) adsorption at 87 K, which allowed for the characterization of the narrow microporosity of the prepared materials due to the absence of interactions between Ar and the sample surface. In addition, the activated microporous carbon material with a KOH/carbon ratio of 2:1 was found to exhibit the largest specific surface area ($1296m^2g^{-1}$ in $N_2$ at 77 K) and microporosity, and a high specific capacitance ($122.8F\;g^{-1}$).

Fabrication of Cu-doped PPy electrode for urea sensor (요소측정용 바이오센서를 위한 Cu-doped PPy electrode의 제작)

  • Yang, Jung-Hoon;Jin, Joon-Hyung;Song, Min-Jung;Yoon, Dong-Hwa;Min, Nam-Ki;Hong, Suk-In
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.2000-2002
    • /
    • 2002
  • 신장병의 조기진단을 위해서 체내의 요소 농도의 정확한 측정은 매우 중요하며, 이러한 이유에서 많은 연구자들은 보다 빠르고 정확한 체내의 요소농도 측정을 위한 바이오센서를 개발 중이다. 본 논문은 반도체 공정을 이용하여 산화막(4.000${\AA}$)이 성장된 p-형 실리콘 웨이퍼를 사용하였다. RF sputter를 사용하여 티타늄과 백금을 증착한 백금 박막전극을 제작하였다. 그 위에 전도성 고분자인 Polypyrrole(PPy)과 전도도를 증가시키기 위하여 구리를 도펀트로 사용 scan rate 40mV/S $0.8{\sim}-0.8V$ 전위영역에서 산화적 전기 중합법 (anodical electropolymerization)을 이용하여 전극을 형성하였다. 요소를 2개의 암모늄 이온과 1개의 탄산 이온으로의 가수분해반응을 촉매하는 효소로써 유레이즈(urease)를 전기적 흡착방법을 이용하여 고정화하고 이에 요소농도의 변화에 대하여 시간대 전류법 (chronoamperometry:CA)을 사용하여 감도를 측정하였다. 최적화된 조건하에서 요소농도에 비례하여 Cu-doped PPy electrode로부터 얻어진 확산한계전류는 $4.5{\mu}A$/decade의 기울기를 나타내었다. 전극의 표면은 SEM(Scanning Electron Microscopy)과 EDX(Energy Dispersive X-Ray Spectrometer)를 이용하여 분석 하였다.

  • PDF

Characteristics of electrochemical properties polypyrrole (PPy) film doped with Cu(II), Ni(II) by electrochemical cementation process (CEMENTATION 공정으로 Cu(II)와 Ni(II) 이온을 각각 도우핑한 전도성 고분자의 전기화학적 특성 분석)

  • Yun, Dong-Hwa;Jin, Joon-Hyung;Yang, Jung-Hoon;Min, Nam-Ki;Hong, Suk-In
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.2011-2013
    • /
    • 2002
  • 일반적으로, 전도성 고분자는 금속에 준하는 전기 전도도와 다공성을 이용한 전해질 이온 및 생채 고분자의 물리, 화학적 도우핑 능력을 장점으로 한다. 따라서, 이 분야의 최근 연구동향도 이온 도우핑에 의한 전도성 고분자의 전기 전도도 향상에 초점이 맞추어져 있으며, 이미 다수의 연구진에 의행 여러 가지 방법이 제시되었다. 본 논문은 전기 화학적 cementation 공정을 이용하여 금속 이온을 전도성 고분자에 도우핑하고 특성을 고찰하였다. 전도성 고분자로써 polypyrrole (PPy)을 사용하고, micropaticles (구리와 니켈 이온)를 도펀트 (dopant)로 하여 -1.5 V ${\sim}$ 2V의 범위에서 순환 전압 전류법 (Cyclic voltammetry)을 이용해 organic-inorganic complex를 제작하였고, 각각의 전극을 비교, 분석 하였다. 구리 이온을 도우핑한 PPy 필름은 전기 전도도가 매우 우수하나 대기 중 공기 및 수분에 의해 쉽게 산화되므로 life-time이 짧다. 이를 보완하기 위하여 상대적으로 안정한 니켈 이온을 도우핑한 PPy 필름의 전기 화학적 특성을 고찰하였다. 전극의 표면은 SEM (Scanning Electron Microscopy), EDX (Energy Dispersive X-ray spectroscopy)를 이용하여 분석하였다.

  • PDF

Estimation of Energetic and Charge Transfer Properties of Iridium(III) Bis(2-phenylpyridinato-N,C2')acetylacetonate by Electrochemical Methods

  • Cha, Joeun;Ko, Eun-Song;Shin, Ik-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.96-100
    • /
    • 2017
  • Iridium(III) bis(2-phenylpyridinato-$N,C^{2^{\prime}}$)acetylacetonate ($(ppy)_2Ir(acac)$), a green dopant used in organic light-emitting devices (OLEDs), was subjected to electrochemical characterization to estimate its formal oxidation potential ($E^{o^{\prime}}$), HOMO energy level ($E_{HOMO}$), electron transfer rate constant ($k^{o^{\prime}}$), and diffusion coefficient ($D_o$). The employed combination of voltammetric methods, i.e., cyclic voltammetry (CV), chronocoulometry (CC), and the Nicholson method, provided meaningful insights into the electron transfer kinetics of $(ppy)_2Ir(acac)$, allowing the determination of $k^{o^{\prime}}$ and $D_o$. The quasi-reversible oxidation of $(ppy)_2Ir(acac)$ furnished information on $E^{o^{\prime}}$ and $E_{HOMO}$, allowing the latter parameter to be easily estimated by electrochemical methods without relying on expensive and complex ultraviolet photoemission spectroscopic (UPS) measurements.

Effect of Thermal Annealing on Nanoscale Thickness and Roughness Control of Gravure Printed Organic Light Emitting for OLED with PVK and $Ir(ppy)_3$

  • Lee, Hye-Mi;Kim, A-Ran;Kim, Dae-Kyoung;Cho, Sung-Min;Chae, Hee-Yeop
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1511-1514
    • /
    • 2009
  • Organic light emitting layer in OLED device was formed by gravure printing process in this work. Organic surface coated by gravure printing typically showed relatively bad uniformity. Thickness and roughness control was characterized by applying various mixed solvents in this work. Poly (N-vinyl carbazole) (PVK) and fact-tris(2-phenylpyridine)iridium($Ir(ppy)_3$) are host dopant system materials. PVK was used as a host and Ir(ppy)3 as green-emitting dopant. To luminance efficiency of the plasma treatment on etched ITO glass and then PEDOT:PSS spin coated. The device layer structure of OLED devices is as follow Glass/ITO/PEDOT:PSS/PVK+Ir(ppy)3-Active layer /LiF/Al. It was printed by gravure printing technology for polymer light emitting diode (PLED). To control the thickness multi-printing technique was applied. As the number of the printing was increased the thickness enhancement was increased. To control the roughness of organic layer film, thermal annealing process was applied. The annealing temperature was varied from room temperature, $40^{\circ}C$, $80^{\circ}C$, to $120^{\circ}C$.

  • PDF

Properties of the Phosphorous Polymer Light Emitting Diodes with PVK:Ir(ppy)$_3$ Emission layer (PVK:Ir(ppy)$_3$ 발광부를 갖는 고분자 인광 발광다이오드의 특성평가)

  • Baek, Seung-Jun;Gong, Su-Cheol;Lee, Ho-Sub;Jang, Seong-Kyu;Chang, Ho-Jung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.363-365
    • /
    • 2010
  • 고분자 발광다이오드(polymer light emitting diode, PLED)는 초박막화, 초경량화가 가능하며 간단한 용액공정 으로 향후 휨성(flexible) 디스플레이로의 응용이 가능할 것으로 기대되고 있다. 본 연구에서는 녹색 고분자 유기 발광다이오드를 제작하고, 효율을 향상 시키고자 이중 발광층을 두어 전기 광학적 특성을 평가하였다. ITO/Glass기판 위에 정공주입층으로 PEDOT:PSS [poly(3,4-ethylenedio xythiophene):poly(styrene sulfolnate)]를 발광물질로는 형광 발광물질인 PVK(poly-vinylcarbazole)와 인광 발광 물질인 Ir(ppy)$_3$[tris(2-phenylpyridine) iridium(III)]를 각각 host와 dopant로 사용하였다. 정공 차단층 및 전자 수송층 두 개의 역할로 사용 가능한 TPBI(1,3,5-tris(2-N-phenylbenzimidazolyl) benzene)를 진공 열증착법으로 막을 형성하였다. 전자주입층으로 LiF(lithium flouride)와 음극으로 Al(aluminum)을 증착하여 최종적으로 ITO/PEDOT:PSS/PVK:Ir(ppy)$_3$/TPBI/LiF/Al 구조를 갖는 녹색 형광:인광 혼합 유기 발광 다이오드를 제작하였다.

  • PDF

Investigation of the Green Emission Profile in PHOLED by Gasket Doping

  • Park, Won-Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.226-226
    • /
    • 2016
  • PHOLED devices which have the structure of ITO/HAT-CN(5nm)/NPB(50nm)/EML(30nm)/TPBi(10nm)/Alq3(20nm)/LiF(0.8nm)/Al(100nm) are fabricated to investigate the green emission profile in EML by using a gasket doping method. CBP and Ir(ppy)3 (2% wt) are co-deposited homogeneously as a background material of EML for green PHOLED, then a 5nm thickness of additionally doped layer by Ir(btp)2 (8% wt) is formed as a profiler of the green emission. The total thickness of the EML is maintained at 30nm while the distance of the profiler from the HTL/EML interface side (x) is changed in 5nm steps from 0nm to 25nm. As shown in Fig. 1, the green (513nm) peak from Ir(ppy)3 is not observed when Ir(btp)2 is also doped homogeneously because Ir(ppy)3 works as an gasket dopant of the Ir(btp)2 :CBP system. Therefore, in this experment, Ir(btp)2 can be used as a profiler of the green emission in CBP:Ir(ppy)3 system. The emission spectra from the PHOLED devices with different x are shown in Fig. 2. In this gasket doping system, stronger red peak means more energy transfer from green to red dopant or higher exciton density by green dopant. To find the green emission profile, the external quantum efficiency (EQE) at 3mA/cm2 for red peaks are calculated. More green light emission at near EML/HBL interface than that of HTL/EML is observed (insert of Fig. 2). This means that the higher exciton density at near EML/HBL interface in homogeneously doped CBP with Ir(ppy)3. As shown in Fig. 3, excitons can be quenched easily to HTL(NPB) because the T1 level of HTL(2.5eV) is relatively lower than that of EML(2.6eV). On the other hand, the T1 level of HBL(2.7eV) is higher than that of EML.

  • PDF

The Effect of Electrolyte on the Viscoelastic Characteristics of PPy Thin Film Using QCA (QCA를 이용한 폴리피롤 박막의 점탄성 특성에 대한 전해질 영향)

  • Song, Seong-Hun;Kim, Jong-Min;Han, Dae-Sang;Park, Jin-Young;Park, Ji-Sun;Chang, Sang-Mok
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.784-788
    • /
    • 1999
  • In this work, we analyzed the viscoelastic characteristics of electrochemically polymerized polypyrrole(PPy) thin film in various electrolyte solutions, $Na_2SO_4,\;Na_2CO_3$ and SDS + $NaClO_4$, using QCA. The characteristics of redox reaction of electrochemically polymerized PPy thin film for 180 sec in each electrolyte, was investigated in 0.1 M $NaClO_4$ electrolyte solution by cyclic voltammetry method. We used one side of quartz crystal electrode as a working electrode and measured the resonant frequency, resonant resistance and current as analytical parameters. As the results, we suggest that electrochemically polymerized PPy thin film in various electrolyte solutions shows tendency changing from elastic characteristics to viscoelastic one in the order of $ClO_4{^{-}}\;+\;DS^-,\;SO_4{^{-2}}$ and $CO_3{^{-2}}$.

  • PDF

Synthesis and Electrochemical Characterization of Polypyrrole/Multi-walled Carbon Nanotube Composite Electrodes for Supercapacitor Applications

  • Paul, Santhosh;Lee, Yoon-Sung;Choi, Ji-Ae;Kang, Yun-Chan;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1228-1232
    • /
    • 2010
  • The nanocomposites of polypyrrole (PPy) and multi-walled carbon nanotube (MWCNT) with different composition are synthesized by the chemical oxidative polymerization method. In these composites, the MWCNTs are uniformly coated by PPy with different thickness. The electrochemical properties of the composite electrodes are investigated by cyclic voltammetry, galvanostatic charge-discharge cycling and electrochemical impedance spectroscopy. The full cells assembled with the PPy/MWCNT composite electrodes deliver initial specific capacitances ranging from 146.3 to 167.2 F/g at 0.5 mA/$cm^2$ and exhibit stable cycling characteristics. The effect of content of MWCNT in the composite on cycling performance of the cells is also investigated.

Ion and solvent transport during the redox reaction of Polypyrrole and poly(N-substituted pyrrole) films in aprotic solutions

  • Lee Hochun;Kwak Juhyoun
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.52-54
    • /
    • 1998
  • Polypyrrole (PPy), Poly(N-methyl Pyrrole) (PMPy) and Poly(N-phenyl Pyrrole) (PPhPy) films in acetonitrile (Af and propylene carbonate (PC) have been compared focusing on their different ion and solvent transport behaviors. During the redox reaction of PPy films, cation, anion, and solvent take part in mass transport. Whereas during the redox reaction of PMPy and PPhPy films, anion and solvent transport are dominant but cation transport is negligible. In addition, solvent transport occurs in the same direction with cation transport for PPy films. On the other hand, solvent transport occurs in the opposite direction to anion transport for PMPy films, and it changes its amount and direction with the kind of the dopant anion and the solvent used at electropolymerization for PPhPy films.