• 제목/요약/키워드: PPh3

검색결과 108건 처리시간 0.017초

Preparation and Characterization of Dinuclear Metal Complexes, $[(PPh_3)_2(CO)M({\mu}-E)M(CO)(PPh_3)_2](SO_3CF_3)_2$ (M = Rh, Ir; E = 1,4-Dicyanobenzene and 1,4-Dicyano-2-butene)

  • Moonsik Kim;JaeKyun Chin;Jaejung Ko
    • Bulletin of the Korean Chemical Society
    • /
    • 제13권5호
    • /
    • pp.556-559
    • /
    • 1992
  • Hydrocarbon solution of $(PPh_3)_2(CO)MOSO_2CF_3$ (M= Rh, Ir) reacts rapidly with 1,4-dicyanobenzene or 1,4-dicyano-2-butene to yield dinuclear metal complexes $[(PPh_3)_2(CO)M({\mu}-dicyanobenzene)M(CO)(PPh_3)_2](SO_3CF_3)_2$ (I: M = Rh; II: M = Ir) or $[(PPh_3)_2(CO)M({\mu}-dicyano-2-benzene)M(CO)(PPh_3)_2](SO_3CF_3)_2$ (III: M = Rh; IV: M = Ir), respectively. Compounds I, II, III, and IV were characterized by $^1H$-NMR, $^{31}P$-NMR, and infrared spectrum. Dichloromethane solution of II and IV reacts with $H_2\;and\;I_2$ to yield oxidative addition complexes $[(PPh_3)_2(CO)IrX_2({\mu}-E)X_2Ir(CO)(PPh_3)_2](SO_3CF_3)_2$ (V; E = 1,4-dicyanobenzene, $X_2$ = $H_2$; VI : E = 1,4-dicyano-2-butene, $X_2$ = $H_2$; VII; E = 1,4-dicyanobenzene, $X_2$ = $I_2$). All metal complexes are bridged by the cyanide groups. Compounds Ⅴ, Ⅵ, and Ⅶ are characterized by conventional methods.

염산 프로프라놀롤-고체 분산계-폴리비닐알코올 하이드로겔 중공좌제로부터의 약물방출 (Controlled Release of Propranolol Hydrochloride(PPH) from PPH-Solid Dispersion System-Polyvinyl Alcohol Hydrogel Hollow Type Suppository)

  • 정진훈;이정연;구영순
    • Journal of Pharmaceutical Investigation
    • /
    • 제26권4호
    • /
    • pp.299-308
    • /
    • 1996
  • In order to develop the controlled release of a drug from the suppsitories, in vitro drug release and in vivo absorption in rabbits were investigated. Various suppository forms with hollow cavities, into which drugs in the form of fine powder or solid dispersion system(SDS) could be placed, were utilized. The polyvinyl alcohol(PVA) hydrogel as a base, and propranolol HCl(PPH) as a model drug were employed. In vitro drug dissolution studies showed that the dissolved amounts(%) of PPH from PPH-methylcellulose(MC)-SDS and PPH-ethylcellulose(EC)-SDS reached 100% and 63% in 4.5-hours, respectively. In the relative strength test for PVA hydrogel, PVA hydrogel became harder and more rigid when the number of freezing-thawing cycles and the ratio of PVA 2000 were increased. In vitro drug release profile revealed that the release rate(%) of PPH from PPH-EC-SDS and PPH-MC-SDS hollow type suppositories were sustained. The release amount(%) of PPH from PPH-EC-SDS hollow type suppositories was not affected by storage time, but since the use of hydrophilic MC made PPH diffuse into the hydrogel after it absorbed the water of base, the various release patterns were appeared as the storage time went by. In vivo absorption experiments with rabbits showed that PPH-EC-SDS(PPH : EC=1:3) hollow type suppository delayed the absorption of PPH, significantly. The $C_{max}$, $AUC_{0{\rightarrow}8}$ and MRT of PPH powder hollow type suppository were $196.37{\pm}5.63\;ng/ml$, 1105.26 ng/ml/min and 8.66 min, respectively. The $C_{max}$, $AUC_{0{\rightarrow}8}$ and MRT of PPH-EC-SDS(PPH : EC=1:3) were $91.30{\pm]14.14\;ng/ml$, 554.69 ng/ml/min, 235.99 min, respectively.

  • PDF

The Ir(PPh$_3)_2\;(CO)OClO_3\;and\;Ir(PPh_3)_3N_2Cl$ Mediated Activation of Aldehyde C-H Bonds via Chelate-Assisted Oxidative Addition

  • Ko, Jae-Jung;Joo, Wan-Chul;Kong, Young-Kun
    • Bulletin of the Korean Chemical Society
    • /
    • 제7권5호
    • /
    • pp.338-341
    • /
    • 1986
  • Hydrocarbon solution of $Ir(PPh_3)_2(CO)OClO_3$ reacts with $Ph_2PC_6H_4$-o-CHO and 3-methyl-2-aminopyridinyl aldimine to yield ${\bar{Ir(Ph_2PC_6H_4-o-CO)}}\;(PPh_3)_2(CO)(H)ClO_4$(1) and ${\bar{Ir(NC_6H_6NC}}C_6H_5)(PPh_3)_2(CO)(H)ClO_4$(2), respectively. The compound $Ir(PPh_3)_2N_2Cl$ also reacts with $Ph_2PC_6H_4$-o-CHO and 3-methyl-2-aminopyridinyl aldimine to give ${\bar{Ir(Ph_2PC_6H_4-o-C}}O)(PPh_3)_2(H)Cl(3)$ and $Ir(NC_6H_5NCC_6H_5(PPh_3)_2(H)Cl(4)$, respectively. Compounds 1, 2, 3, and 4 were characterized by infrared, $^1H$ NMR, $^{31}p$ NMR, UV spectra, and conductivity measurements.

Selective Deprotonation and Decarbonylation from Hydridocarbonyl-iridium(III) Compounds with Trimethylamine N-oxide

  • 천청식;오문현;원경식;조해연;신동찬
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권1호
    • /
    • pp.85-88
    • /
    • 1999
  • Me3NO selectively abstracts the proton from [IrH(CO)(PPh3)2L(A)]0.1+,2+ (1) (A: -CCPh, Cl-, CH3CN and L: CH3CN, Cl-, C1O4-) to give the trans-elimination products, Ir(CO)(PPh3)2(A) (2). The reductive elimination of H+ and Cl- from Ir(H)Cl2(CO)(PPh3)2 (lb) to give IrCl(CO)(PPh3)2 (2b) is first order in both lb and Me3NO. The rate law d[2b]/dt=kobs[lb]=k2[lb][Me3NO] suggests the formation of (PPh3)2(CI)2(CO)Ir-H-ON+Me3 in the rate determining step (k2) followed by the fast dissociation of both H-ON+Me3 and the trans ligand Cl-. The rate significantly varies with the cis liaand A and the trans ligand L and is slower with both A and L being Cl- than other ligands. Me3NO selectively eliminates CO from [Ir(H)2(CO)(PPh3)2L]0,+ (3) (L=CH3CN, C1O4-) to produce [Ir(H)2(PPh3)2L'(CH3CN)]+ (4) (L'=CH3CN, PPh3) in the presence of L. Me3NO does not readily remove either H+ or CO from cis, trans- and trans, trans-lr(H)(-CCPh)2(CO)(PPh3)2 and cis, trans-Ir(H)2Cl(CO)(PPh3)2. The choice whether hydridocarbonyls, 1 and 3 undergo the deprotonation or decarbonylation may be understood mostly in terms of thermodynamic stability of the products and partly by kinetic preference of Me3NO on proton and CO.

Preparation and Characterization of Dinuclear and Trinuclear Metal Complexes, $[(PPh_3)_2(CO)M({\mu}-E)M(CO)(PPh_3)_2]X_2$ (M=Rh, Ir; E=Pyrazine, 4,4'-Bipyridyl, $X=SO_3CF_3$; $E=Pd(CN)_4$, $Pt(CN)_4$, X=none)

  • Ko Jaejung;Lee Myunggab;Kim Moonsik;Kang Sang Ook
    • Bulletin of the Korean Chemical Society
    • /
    • 제13권2호
    • /
    • pp.158-162
    • /
    • 1992
  • Hydrocarbon solution of $(PPh_3)_2(CO)MOSO_2CF_3(M=Rh$, Ir)reacts rapidly with Pyrazine or 4,4'-bipyridyl to yield dinuclear metal complexes $[(PPh_3)_3(CO)M({\mu}-pyrazine)M(CO)(PPh_3)_2](SO_3CF_3)_2$ (I: M= RhH; III: M=Ir) or [$(PPh_3)_2$(CO)M(${\mu}$-44'-bipyridyl)M(CO)$(PPh_3)_2](SO_3CF_3)_2$, (II: M=Rh; IV: M=Ir), respectively. Compounds, I, II, III, and IV were characterized by $^1H-NMR$, $^{13}C-NMR$, $^{31}P-NMR$, and infrared spectrum. Ethanol solution of $(PPh_3)_2(CO)MOSO_2CF_3$ (M=Rh, Ir) also reacts with $(TBA)_2$M'$(CN)_4$ (M'=Pd, Pt) to yield trinuclear metal complexes [$(PPh_3)_2$(CO)dM-NCM'$(CN)_2$CN-M(CO)$(PPh_3)_2]$ (V : M=Rh, M'=Pd; VI : M=Rh, M'=Pt; VII: M=Ir, M'=Pd; VIII: M=Ir, M'=Pt). The trinuclear metal complexes V, VI, VII, and VIII are bridged by the cyanide groups. The infrared spectrum of V, VI, VII, and VIII supports the presence of the bridged cyanide and terminal cyanide group.

Selective Dimerization and Cyclotrimerization of Phenylacetylene with Rhodium and Iridium Complexes

  • Chin, Chong-Shik;Won, Gyong-Shik;Song, Joong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권11호
    • /
    • pp.961-966
    • /
    • 1994
  • Oligomerization of phenylacetylene is catalyzed by $Rh(ClO_4)(CO)(PPh_3)_2$ (Rh-1), $[Rh(CO)(PPh_3)_3]ClO_4$ (Rh-2), $[Rh(COD)L_2]ClO_4 (L_2=(PPh_3)_2$, Rh-3; $(PPh_3)(PhCN)$, Rh-4; $(PhCN)_2$, Rh-5), $[Rh(C_3H_5)(Cl)(CO)(SbPh_3)_2]ClO_4$ (Rh-6), $[Ir(COD)L_2]ClO_4 (L_2=(PPh_3)_2$, $Ir-1; (PPh_3)(PhCN)$, $Ir-2; (PhCN)_2$, Ir-3; (AsPh_3)(PhCN)$, $Ir-4; Ph_2PCH_2CH_2PPh_2$, Ir-5; COD, Ir-6 and 2,2'-dipyridyl, Ir-7), $Ir(ClO_4)(CO)(PPh_3)_2$, $Ir-8, [Ir(PhCN)(CO)(PPh_3)_2]ClO_4$, Ir-9 to produce dimerization products, 1,3-diphenylbut-1-yn-3-ene, 1, (E)-1,4-diphenylbut-1-yn-3-ene, 2 and (Z)-1,4-diphenylbut-1-yn-3-ene, 3, and cyclotrimerization products, 1,3,5-triphenylbenzene, 4 and 1,2,4-triphenylbenzene, 5. Product distribution of the oligomers varies depending on various factors such as the nature of catalysts, reaction temperature, counter anions and excess ligand present in the reaction mixtures. Increasing reaction temperature in general increases the yield of the cyclotrimerization products. Exclusive production of dimer 1 and trimer 4 can be obtained with Ir-1 at 0 $^{\circ}$C and with Ir-2 in the presence of excess PhCN (or $CH_3CN$) at 50 $^{\circ}$C, respectively. Dimer 2 (up to 81%) and trimer 5 (up to 98%) are selectively produced with Rh-1 at 50 and 100 $^{\circ}$C respectively. Production of 3 is selectively increased up to 85% by using $PF_6$- salt of $[Ir(COD)(PPh_3)_2]$+ at 25 $^{\circ}$C. Addition of $CH_3I$ to Rh-1 produces $CH_3PPh_3^+I-$ and increases the rate of oligomerization(disappearance of phenylacetylene). Among the metal compounds investigated in this study, Ir-1 catalyzes most rapidly the oligomerization where the catalytically active species seems to contain lr(PPh3)2 moiety. The stoichiometric reaction of phenylacetylene wth Ir-9 at 25 $^{\circ}$C quantitatively produces hydridophenyl-ethynyl iridium(III) complex, $[lr(H)(C{\equiv}CPh)(PhCN)(CO)(PPh_3)_2]ClO_4$ (Ir-11), which seems to be an intermediate for the oligomerization.

The [M(cod)(PPh$_3)_2] PF_6$ (M = Rh, Ir; cod = 1,5-cyclooctadiene) Mediated Activiation of Aldehyde C-H Bond

  • Ko, Jae-Jung;Joo, Wan-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • 제8권5호
    • /
    • pp.372-376
    • /
    • 1987
  • Acetone solution of quinoline-8-carbaldehyde reacts with $[Rh(cod)(PPh_3)_2] PF_6$and $[Ir(cod)(PPh_3)_2] PF_6$ to yield $[Rh(NC_9H_6CO)(H)(PPh_3)_2(CH_3COCH_3)] PF_6$ (1) and $[Ir(NC_9H_6CO)(H)(PPh_3)_2(CH_3COCH_3)] PF_6$ (2), respectively. The compound $[Ir(cod)(PPh_3)_2] PF_6$ also reacts with $Ph_2PC_6H_4-o-CHO$ in the acetone / $H_2O$ mixture to give $[Ir(Ph_2PC_6H_4-o-CO)(H)(PPh_3)_2(CH_3COCH_3)] PF_6$ (3). Compounds 1, 2, and 3 were characterized by infrared, $^1H$ NMR, $^{31}P$ NMR spectra and conductivity measurement. The $^1H$ NMR spectra of 1, 2, and 3 support the presence of a terminal hydride that is cis to the phosphine. The IR band of 3 at 2185 $cm^{-1}$, which is assigned to $\nu$(Ir-H), and the hydride cleavage reaction of 3 with $CCl_4$, provide evidence for the Ir-H bond.

Rutheniumhydridonitrosyl 착물을 이용한 불포화 유기화합물의 수소화 반응 (Catalytic Hydrogenation of Unsaturated Organic Compounds by Rutheniumhydridonitrosyl Complexes)

  • 박미영;김영중;조욱재;이익모
    • 대한화학회지
    • /
    • 제40권6호
    • /
    • pp.445-452
    • /
    • 1996
  • Hydridonitrosyl complex의 촉매 활용 가능성과 반응 mechanism을 조사하기 위하여 $RuH(NO)(PPh_3)_3$와 RuH(NO)(etp)에 의한 ketone과 aldehyde의 수소화 반응을 연구하였다. 이 촉매들은 ketone과 aldehyde의 수소화 반응에 대하여 촉매 활성을 보이고 있으며, 활성은 기질의 입체장애 및 전자적 요인에 의존하고 있다. 즉, 입체 장애가 적을수록 촉매의 활성이 증가하며, 전자적 요인의 효과는 ketone의 경우 carbonyl carbon의 부분양전하의 양이 증가할수록, aldehyde의 경우는 carbonyl group의 double bond character가 강할수록 반응성이 증대되는 방향으로 나타나고 있다. 이러한 결과는 ketone과 aldehyde의 반응 mechanism이 다름을 반영하고 있다. 한편, RuH(NO)(etp)와 과잉의 $PPh_3$ 존재하에서 $RuH(NO)(PPh_3)_3$가 촉매 활성을 보이고 있음은 NO ligand의 결합방식의 변화를 통한 반응경로가 존재함을 확인하고 있다. 과잉의 $PPh_3$는 촉매와의 몰비가 변함에 따라 작용의 변화(ligand의 해리 방지 ${\rightarrow}$ 염기 ${\rightarrow}$ ligand)가 나타나며 촉매 활성에 영향을 미치고 있다. 이러한 결과를 이해하기 위하여 각 촉매에 대한 반응 mechanism을 제시하였다. 한편, 동일한 기질에 있어서 RuH(NO)(etp)의 활성은 항상 $RuH(NO)(PPh_3)_3$에 비하여 낮았으며 이는 주로 착물의 구조차이에 기인한 것으로 해석되며, 경쟁반응에 있어서는 olefin의 수소화 반응이 carbonyl group의 수소화 반응보다 선택적으로 진행되고 있다.

  • PDF

$Re(NC_6F_5)(PPh_3)_2Cl_3 $화합물의 합성 및 구조 (Preparation and Structure of $Re(NC_6F_5)(PPh_3)_2Cl_3 $)

  • 박병규;김영웅
    • 한국결정학회지
    • /
    • 제7권2호
    • /
    • pp.113-119
    • /
    • 1996
  • Re(O)(PPh3)2Cl3과 2,3,4,5,6-pentafluoroaniline (C6F5NH2)의 반응으로 Re(NC6F5)(PPh3)2Cl3 생성물을 얻었다. 이 화합물의 구조를 1H-NMR, 원소분석, 그리고 X-ray 회절법으로 규명하였다. 화합물을 사방정계로 (Pna21, a=18.763Å, b=14.737(2)Å, c=16.707(3)Å, Z=4) 결정화되었다. 최소자승법으로 구조를 정밀화한 결과 신뢰도는 R(wR2) = 0.0455(0.1148)였다.

  • PDF

Carbonylation of Benzyl Alcohols and Benzyl Bromide to Phenylacetic Acids with Rhodium(Ⅰ) and Iridium(Ⅰ) Complexes

  • Chin Chong Shik;Jung Ho Jin;Hong Seung-gweon
    • Bulletin of the Korean Chemical Society
    • /
    • 제13권4호
    • /
    • pp.391-395
    • /
    • 1992
  • Rhodium(I) and iridium(II) complexes, M(Cl$O_4$)(CO)$(PPh_3)_2$ and [M(CO)$(PPh_3)_3$]Cl$O_4$ (M = Rh, Ir), and RhX(CO)$(PPh_3)_2$ (X = Cl, Br, OH) catalyze the carbonylation of benzyl alcohols to produce phenylacetic acids under 6 atm of CO at $110^{\circ}C$ in deuterated chloroform. Benzyl alcohols initially undergo dehydration to give dibenzyl ethers which are then carbonylated to benzyl phenylacetates, and the hydrolysis of benzyl phenylacetate produces phenylacetic acids and benzyl alcohols. The carbonylation is accompanied with dehydrogenation followed by hydrogenolysis of benzyl alcohols giving benzaldehydes and methylbenzenes which are also produced by CO2 elimination of phenylacetic acids. Phenylacetic acid is also produced in the reactions of benzyl bromide with CO catalytically in the presence of Rh(Cl$O_4$)(CO)$(PPh_3)_2$ and $H_2O$, and stoichiometrically with Rh(OH)(CO)$(PPh_3)_2$ in the absence of $H_2O$.