• Title/Summary/Keyword: PPSL

Search Result 13, Processing Time 0.025 seconds

The Application of a Pulsed Photostimulated Luminescence (PPSL) Method for the Detection of Irradiated Foodstuffs

  • Yi, Sang-Duk;Yang, Jae-Seung
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.3
    • /
    • pp.136-141
    • /
    • 2000
  • The properties of pulsed photostimulated luminescence (PPSL) were measured to use as basis data for the detection of irradiated foodstuffs (34 different foods). Samples were packed in polyethylene bags and irradiated at 1, 5, and 10 kGy with a dose rate of 10 kGy/h. The samples irradiated were introduced in the sample chamber without other preparation and measured PPSL photon counts for 60 and 120 s. The PPSL photo counts of the irradiated samples were higher than the unirradiated, increased with increasing irradiation dose, and showed a good relationship between irradiation doses and photon counts in a multinomial expression. These results suggest that the detection of irradiated foodstuffs was possible by PPSL. Therefore, PPSL can be proposed as the method for the detection of irradiated foodstuffs.

  • PDF

Pulsed Photostimulated Luminescence (PPSL) of Gamma Irradiated Soybean Paste Powder

  • Yi, Sang-Duk;Oh, Man-Jin
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.2
    • /
    • pp.145-150
    • /
    • 2005
  • This study was carried out to examine the properties of sample amount and storage conditions on the accumulated pulsed photostimulated luminescence (PPSL) signals of soybean paste powder. Difference amounts (0.1, 0.5 and 1 g) of soybean paste powder samples stored in normal room and darkroom conditions were measured. The PPSL signals of the soybean paste powders significantly increased with irradiation dose up to 10 kGy. The PPSL signals of irradiated soybean paste powder samples decreased with increasing storage periods. The decay rates were similar to regardless of storage conditions and sample amount. The PPSL signals of the irradiated soybean paste powder measured for 120 s were higher than those measured for 60 s. These results indicated that although the PPSL signal of all soybean paste powder samples decreased with increasing storage time, detection of irradiated samples was still possible after 12 months of storage regardless of sample amount and measurement times in both normal room and darkroom conditions.

Identification of Irradiated Granule-Type Ramen Soup Powder by Pulsed Photostimulated Luminescence and Thermoluminescence during Storage

  • Yi, Sang-Duk;Yang, Jae-Seung;Kim, Dong-Woo;Shin, Doo-Ho;Jo, Gab-Yeon;Chang, Kyu-Seob;Oh, Man-Jin
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.1
    • /
    • pp.79-84
    • /
    • 2003
  • This study was carried out to establish a method for determining if granule-type Ramen soup powder has been irradiated. Thermoluminescence (TL) and pulled photostimulated luminescence (PPSL) were used as the detection methods through observed changes of TL and PPSL intensities after storage under differing conditions. PPSL intensities increased with increases in irradiation doses. The threshold level of PPSL was below 412$\pm$58 photon counts regardless of storage conditions (room and darkroom) after 10 months. TL intensities also increased with increasing irradiation doses. The coefficients ($R^2$) of PPSL (0.74~0.94) and TL intensities (0.92~0.58) were very highly correlated with irradiation dose. The PPSL and TL intensities were decreased after 10 months of storage. These results indicate that discrimination of irradiated from non-irradiated granule-type Ramen soup powder is possible using TL and PPSL methods despite the decrease in intensities of TL and PPSL with increasing storage times.

Influence of Sample Form, Storage Conditions and Periods on Accumulated Pulsed Photostimulated Luminescence Signals of Irradiated Korean Sesame and Perilla Seeds

  • Yi, Sang-Duk;Yang, Jae-Seung
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.4
    • /
    • pp.216-223
    • /
    • 2001
  • A study was carried out to examine the effect of sample form and storage conditions on the accumulated PPSL signals. Korean perilla and sesame seeds were tested as whole samples and separated minerals. Radiation-induced PPSL signals of perilla and sesame seeds themselves significantly increased with irradiation dose up to 5 kGy. On the other hand, a slight decrease in the accumulated PPSL signals was shown at 10 kGy. Similar results were also found in separated minerals. The accumulated PPSL signals of irradiated samples decreased with increasing storage periods. The decay rate was higher in 5 or 10 kGy-irradiated samples than in 1 kGy, in room conditions than in darkroom conditions, and in sesame and perilla seeds themselves than in separated minerals. The accumulated PPSL signals of the irradiated samples measured fur 120 s were higher than those measured for 60 s. These results indicated that although the PPSL signal of all samples decreased with increasing the storage time, detection of irradiated samples was still possible after 12 months of storage regardless of sample form and measurement times (60 and 120 s) in both room and darkroom conditions.

  • PDF

Pulsed Photostimulated Luminescence (PPSL) of Irradiated Importation Sesame and Perilla Seeds (방사선 조사된 수입 참깨, 들깨의 광여기 발광)

  • Yi, Sang-Duk;Woo, Si-Ho;Yang, Jae-Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.173-177
    • /
    • 2001
  • A study was carried out to establish a detection method for imported sesame and perilla seeds using pulsed photostimulated luminescence (PPSL) whether they have been irradiated or not. Samples were packed in polyethylene bags and irradiated at 1, 5, and 10 kGy with a dose rate of 10 kGy/h. The whole sample of sesame and perilla and the minerals separated from seeds were introduced in the sample chamber and measured PPSL photon counts for 60 and 120 s. The PPSL photon counts of samples increased with increasing irradiation dose and showed a higher correlation coefficients in separated minerals than in sesame and perilla seeds themselves. These results suggest that imported sesame and perilla seeds be possibly detected by both their whole sample and separated minerals by PPSL measurements.

  • PDF

The Use of Pulsed Photostimulated Luminescence (PPSL) and Thermoluminescence (TL) for the Detection of Irradiated Perilla and Sesame Seeds

  • Yi, Sang-Duk;Woo, Si-Ho;Yang, Jae-Seung
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.3
    • /
    • pp.142-147
    • /
    • 2000
  • To establish a detection method of irradiated perilla and sesame seeds, studies were performed with pulsed photostimulated luminescence (PPSL) and thermoluminescence (TL). The PPSL photon counts of the mineral separated from irradiated sesame and perilla seeds were higher than unirradiated one and exhibited an increase with increasing irradiation dose and mineral content. Also TL intensities of minerals separated from irradiated sesame and perilla seeds increased with increasing irradiation dose. In all samples, detection was possible with shapes and maximum TL temperatures of the second glow curves showing lower regions than those of the first glow curves and correctly classified as irradiated samples. Glow curve ratios of irradiated samples were higher than 0.5. These results suggest that PPSL and TL are applicable methods for the detection of irradiated perilla and sesame seeds.

  • PDF

Detection of Irradiated Korean Wheat Flour by Viscosity and Pulsed Photostimulated Luminescence (PPSL) Methods

  • Yi, Sang-Duk;Chang, Kyu-Seob;Oh, Man-Jin
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.2
    • /
    • pp.140-144
    • /
    • 2005
  • This study was carried out to establish methods for irradiation detection of irradiation in Korean wheat flour by pulsed photostimulated luminescence (PPSL) and viscometric methods. The photon counts of the irradiated Korean wheat flour measured by PPSL immediately after irradiation increased with increasing irradiation dose. The photon counts in the irradiated Korean wheat flour almost disappeared with lapse of time after storage in normal room conditions, but irradiation detection was still possible after 6 months in darkroom conditions. All irradiated samples indicated a decrease in viscosity with increasing stirring speeds (rpm) and irradiation doses. Irradiation at 1 kGy significantly decreased the viscosity. Consequently, these results suggest that the detection of irradiated Korean wheat powder is possible by both viscometric and PPSL methods.

Pulsed Photostimulated Luminescence of Irradiated Black and White Peppers and Effects of Long-Term Storage

  • Oh, Man-Jin;Yi, Sang-Duk;Jeoung, Hyun-Kyo;Chang, Kyu-Seob;Yang, Jae-Seung;Song, Chi-Kwang
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.2
    • /
    • pp.195-200
    • /
    • 2002
  • Changes in accumulated pulsed photostimulated luminescene (PPSL) signals were observed after storage, which affected the ability to detect irradiation in black and white peppers. The PPSL curves were accumulated linearly during the 120 s measurement times, and PPSL signals increased according to irradiation doses. Threshold levels of black and white peppers were below 557$\pm$220 and 503$\pm$92 photon counts in 60 s, and below 679$\pm$351 and 812 $\pm$ 648 photon counts in 120 s, respectively. The PPSL signals of black and white peppers linearly increased with irradiation dose up to 5 kGy, but very little from 5~10 kCy. The accumulated PPSL signals of irradiated black and white peppers had higher decay rates when stored in normal room conditions than in a darkroom Detection of irradiation was possible for up to 12 months after irradiation, if the samples were stored in a darkroom.

Viscometric and Pulsed Photostimulated Luminescence Properties of Irradiated Glutinous Rice

  • Yi, Sang-Duk;Yang, Jae-Seung;Chang, Kyu-Seob;Oh, Man-Jin
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.2
    • /
    • pp.133-137
    • /
    • 2004
  • This study was carried out to establish a method for the detection of irradiated glutinous rice by measuring pulsed photostimulated luminescence (PPSL) and viscometric properties. Viscosity was determined using a Brookfield DV-III rotation viscometer at 3$0^{\circ}C$ and measured at 30, 60, 90, 120, 150, 180, and 210 rpm. All irradiated samples indicated a decrease in viscosity with increasing stirring speeds (rpm) and irradiation doses. Treatments with 2∼5 kGy significantly decreased the viscosity. The photon counts of the irradiated glutinous rice were measured by PPSL and the photon counts of the non-irradiated and irradiated glutinous rice measured immediately after irradiation exhibited an increase with increasing irradiation dose. The photon counts of irradiated glutinous rice almost disappeared with the lapse of time when stored under normal room conditions, but was still possible to detect after 12 months of darkroom storage. Consequently, these results indicate that the detection of irradiated glutinous rice is possible by both viscometric and PPSL methods.

Trial to Identify Irradiated Corn Powder by Viscometric and Pulsed Photostimulated Luminescence (PPSL) Methods

  • Yi, Sang-Duk;Chang, Kyu-Seob;Yang, Jae-Seung
    • Journal of Food Hygiene and Safety
    • /
    • v.16 no.1
    • /
    • pp.82-87
    • /
    • 2001
  • A study was performed to establish detection methods by viscometric and pulsed photostimulated luminescence (PPSL) methods for irradiated com powder. Viscosity was determined using a Brookfield DV-rotation viscometer at 3$0^{\circ}C$ and operated at 30, 60, 90, 120, 150, 180, and 210 rpm. All irradiated samples showed a decrease in Viscosity with increasing stirring speeds (rpm) and irradiation doses. Treatments at 1~3 kGy significantly decreased the viscosity. The photon counts of irradiated corn powder were measured by PPSL immediately after irradiation and exhibited an increase with increasing irradiation dose. The photon counts of irradiated com powder almost disappeared with lapse of time in room conditions, but detection of irradiation was still possible after one month at darkroom conditions. Consequently, these results suggest that the detection of irradiated com powder is possible by both viscometric and PPSL methods.

  • PDF