• 제목/요약/키워드: POI추천

검색결과 23건 처리시간 0.022초

증강 그래프 기반 그래프 뉴럴 네트워크를 활용한 POI 추천 모델 (Next POI Recommendation based on Graph Neural Network of Augmented Graph)

  • 정현지;장광선
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.16-18
    • /
    • 2023
  • 본 연구는 궤적 데이터(trajectory data)를 대상으로 증강 그래프 기반의 그래프 뉴럴 네트워크를 활용하여 다음에 방문한 장소를 추천하는 모델을 제안한다. 제안 모델은 전체 궤적 데이터를 그래프로 표현하여 추출한 글로벌 궤적 플로우의 특성을 다음 방문할 POI 추천에 활용한다. 이때, POI 추천시 자주 발생하는 두 가지 문제를 추가로 해결함으로써 POI 추천의 정확도를 높이는 것을 목표로 한다. 첫 번째 문제는 추천 대상 궤적 데이터의 길이가 짧은 경우에 성능 저하가 발생한다는 것이다. 두 번째 문제는 콜드-스타트 문제이다. 기존 POI 추천 모델은 매우 적은 방문 기록만 가지는 사용자 또는 POI에 대해서는 매우 낮은 예측 성능을 보인다. 본 연구에서는 궤적 그래프에서 일부 엣지를 삭제하여 생성한 증강 그래프 기반의 궤적 플로우 특징 기반 모델을 제안함으로써 짧은 길이의 궤적 데이터 및 콜드-스타트 사용자/POI에 대한 추천 성능을 높인다.

체크인 시퀀스 기반의 next POI 추천 시스템을 위한 네거티브 샘플링 방법 (A Negative Sampling Method for Next POI Recommender Systems Based on Check-in Sequences)

  • 김예빈;배홍균;김상욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.470-472
    • /
    • 2023
  • 최근 위치 기반 장소 (POI) 추천 서비스가 많이 사용되면서, 사용자의 이전 방문지들에 대한 체크인 시퀀스를 기반으로 현재 (다음으로) 방문할 법한 POI 를 찾아 사용자에게 추천하는, next POI 추천 시스템에 관한 연구가 활발히 진행되고 있다. 하지만, 기존 연구들의 경우 next POI 추천을 위한 모델 학습 시, 사용자의 네거티브 POIs 에 관한 정교한 샘플링 없이 사용자 선호도를 추론해왔다. 본 연구에서는, 사전 학습된 별도의 사용자 선호도 추론 모델을 통해 사용자의 네거티브 POI로서 쉽게 분류되기 어려운 하드 네거티브 POIs 를 찾고, 이들을 위주로 수행되는 하드 네거티브 샘플링 방법을 새롭게 제안한다. 우리는 실 세계 데이터셋을 이용한 실험을 통해, 제안 방안이 기존 연구들에서 사용되어 온 랜덤 네거티브 샘플링 방법 대비 recall@5 기준, 최대 16.4%까지 추천 정확도를 향상시킬 수 있음을 확인하였다.

사용자의 선호도 및 이동 패턴을 이용한 POI 추천 (POI Recommendation Using User Preferences and Moving Patterns)

  • 이충희;임종태;박용훈;복경수;유재수
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(C)
    • /
    • pp.36-38
    • /
    • 2012
  • 최근 사용자들의 궤적 분석을 통해 사용자의 성향에 적합한 정보를 추천해주는 연구들이 진행되고 있다. 이러한 연구들은 여행지 추천, 친구 추천 등과 같은 응용 서비스를 위해서 클러스터링 기법과 패턴 매칭 기법을 많이 사용하고 있다. 그러나 클러스터링 기법은 추천 받는 사용자의 선호도가 반영되지 않고, 다른 사용자들의 선호도에 따라 추천을 해주는 단점이 존재한다. 또한, 패턴 매칭 기법은 다른 사용자와의 POI(Point of Interest)의 유형과 거리를 비교하여 추천을 수행하기 때문에 사용자의 세부적인 선호도를 반영할 수 없는 단점이 존재한다. 이러한 기존 연구들을 보완하기 위해 본 논문에서는 POI의 속성 정보와 사용자의 이동 패턴을 고려한 POI을 추천 기법을 제안한다. 제안하는 기법은 크게 사용자의 속성 정보를 이용해서 선호도를 계산하고 선호도가 다른 궤적을 필터링하는 부분과 패턴 매칭 기법을 사용하여 근접한 궤적을 찾는 부분으로 구성된다. 제안하는 기법의 우수성을 입증하기 위해서 추천된 POI 궤적과 사용자 POI 궤적을 비교하여 두 궤적의 이동 패턴이 유사함을 확인하였다.

실내 위치기반 서비스를 위한 사용자 관심지점 탐사 기법과 POI추천 시스템의 구현 (The Development of Users' Interesting Points Analyses Method and POI Recommendation System for Indoor Location Based Services)

  • 김범수;이연;김경배;배해영
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권5호
    • /
    • pp.81-91
    • /
    • 2012
  • 최근 실내 위치기반서비스를 위한 다양한 측위 기술의 발전으로 실내에서도 사용자의 위치측정이 가능해짐에 따라 다양한 형태의 실내 위치기반 서비스가 개발되고 있다. 이에 쇼핑몰이나 백화점 등의 대규모 상업 공간 같은 복잡한 실내 공간에서 사용자에게 가장 적합한 위치나 매장을 추천하는 개인화된 POI 추천 시스템의 개발이 필요하게 되었다. POI 추천을 위해서는 사용자의 이동성과 대규모 상업공간의 공간성을 고려한 사용자 관심지점 탐사 기법의 연구가 필요하다. 이에 본 논문에서는 실내 위치기반 서비스의 POI 추천 시스템의 구현과 사용자들의 이동 데이터로부터 다양한 관심지점을 고려하기 위해 사용자가 일정 시간 동안 머무른 지점을 Stay point라 정의하고 실내공간에서 Stay point를 탐색하는 알고리즘을 제안하였다. 또한 제안된 알고리즘을 이용하여 탐색한 Stay point로부터 방문패턴을 탐사하여 POI 추천 시스템을 구현하였다. 구현된 시스템은 사용자의 모든 이동 로그를 이용한 패턴탐사보다 데이터양을 획기적으로 줄임으로써 빠른 패턴탐사와 메모리 사용량을 줄일 수 있었다.

장소 추천을 위한 방문 간격 보정 (Temporal Interval Refinement for Point-of-Interest Recommendation)

  • 김민석;이재길
    • 데이타베이스연구회지:데이타베이스연구
    • /
    • 제34권3호
    • /
    • pp.86-98
    • /
    • 2018
  • 장소추천시스템은 시간과 장소가 주어졌을 때, 사용자에게 가장 흥미로운 장소를 추천해주는 시스템을 말한다. 스마트폰과 사물인터넷(IoT), 장소기반 소셜네트워크(LBSN)의 발달에 힘입어 사용자들의 방대한 양의 장소 방문 데이터를 축적하게 되었고, 이를 통해 특정한 시점에 사용자들이 원하는 장소를 적절히 추천해줄 수 있는 장소추천시스템의 중요성이 부각되었다. 장소추천시스템은 사용자의 방문(Check-in) 횟수라는 암시적 피드백(Implicit feedback) 데이터에서 사용자의 시퀀스 선호(Sequential preference)를 이끌어내어 높은 성능을 내기 위한 연구들이 제안되었다. 하지만 시퀀스 선호 정보를 활용하여 모델을 구성하는 경우, 데이터의 밀도가 더욱 희박해지고 이에 따라 적은 수의 데이터에 기반하여 구축되는 모델의 성능이 왜곡될 가능성이 존재한다. 본 연구에서는 신뢰도(Confidence)에 기반하여 방문 주기를 보정하는 방법론을 제안한다. 사용자의 시퀀스 선호 정보로부터 도출된 장소 간 방문 시간전이간격(temporal transition interval)을 활용하여 추천시스템을 구성할 때, 해당 방법론을 통하여 데이터의 왜곡을 보정함으로써 추천시스템의 성능을 향상하였다. 제안하는 방법의 효과를 검증하기 위하여, Foursquare와 Gowalla의 데이터셋을 이용한 비교실험을 통해 제안하는 방법론의 우수성을 보였다.

소셜 미디어 상에서 개인화된 여행 경로 추천 기법 (Personalized Travel Path Recommendation Scheme on Social Media)

  • ;임종태;복경수;유재수
    • 한국콘텐츠학회논문지
    • /
    • 제19권2호
    • /
    • pp.284-295
    • /
    • 2019
  • 소셜 미디어 환경에서 여행과 커뮤니티에서 기고한 사진과 관련된 메타 데이터 (태그, 지리적 위치 및 찍은 날짜)에 기반한 개인화 된 여행 경로 추천 기법이 연구되고 있다. 사용자는 소설 미디어를 사용하고 자신의 위치 기록을 여행 경로의 형태로 기록한다. 이러한 여행 경로 정보는 미래의 여행자들에게 새로운 추천 정보를 제공하기 위한 유용한 정보로 활용 될 수 있다. 본 논문에서는 라이프 로그를 기반으로 한 개인화 된 여행 경로 추천 기법을 제안한다. 제안하는 기법은 여행자 및 지역 사회가 제공한 라이프 로그 및 사진 정보를 활용하여 사용자에게 개인화된 추천 서비스를 제공할 수 있을 뿐만 아니라 개별 관심 장소가 아닌 대중적인 여행 경로도 추천 할 수 있다 (POI). 제안하는 개인화된 여행 경로 추천 기법은 POI 가지치기 단계와 여행 경로 생성 단계로 구성된다. POI 가지치기 단계에서는 POI 전체 데이터로부터 사용자에게 추천할 경로를 생성하는데 필요한 POI만을 남기고 가치기를 수행한다. 여행 경로 생성 단계에서는 POI 가지치기 단계를 통해 도출된 POI 사용자 관심도, 비용, 시간, 이벤트 등을 고려하여 후보 경로를 생성한다.

위치 기반 소셜 네트워크 환경에서 시간과 활동 영역을 고려한 POI 추천 (POI Recommendation Using Time and Activity Range in Location Based Social Networks)

  • 이규남;임종태;복경수;유재수
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2017년도 춘계 종합학술대회 논문집
    • /
    • pp.17-18
    • /
    • 2017
  • 손쉽게 현 위치 정보를 공유하고 사용자 간 커뮤니케이션이 가능한 위치 기반 소셜 네트워크가 대중화되면서 장소 추천에 대한 연구가 활발히 진행되어 있다. 본 논문은 시간대별 사용자 선호도와 주요 활동 영역을 고려한 POI 추천 기법을 제안한다. 장소 카테고리별 사용자의 체크인(che-ck-in)정보를 시간대로 분할하여 시간에 따른 장소의 선호도를 판별하고 사용자의 과거 이력을 이용하여 사용자별 활동 영역을 선별한다. 장소의 선호도와 선별된 활동 영역에 기반하여 협업 필터링을 수행하여 POI를 추천한다.

  • PDF

Point-of-Interest 추천을 위한 매장 간 상관관계 분석 및 선호도 예측 연구 (A Study on Correlation Analysis and Preference Prediction for Point-of-Interest Recommendation)

  • 박소현;박영호;박은영;임선영
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권5호
    • /
    • pp.871-880
    • /
    • 2018
  • 최근 소비자관련 빅 데이터 증가와 함께 이와 관련된 기술인 POI(Point-of-Interest) 추천 기술이 주목받고 있다. POI란, 소비자가 흥미롭거나 유용하다고 여기는 특정한 장소를 의미한다. 이전에 진행되었던 POI 추천시스템 관련연구들은 특정 데이터 셋에 한정되어 과 적합 문제가 발생할 수 있다는 한계점이 있다. 따라서 본 연구에서는 서울로 및 송정로에 설치한 통합 센서로 부터 얻은 사용자 매장 방문 실 데이터를 이용하여 매장 간 유사도 및 상관관계를 분석하며, 분석 결과를 토대로 신규 사용자가 흥미 있을 만한 매장을 추천해 주는 선호도 예측 시스템 연구를 한다. 실험 결과, 다양한 유사도 및 상관관계 분석을 통하여 관련성이 높은 매장의 리스트와 관련성이 낮은 매장의 리스트를 도출해낼 수 있었다. 또한, 다양한 조건에서 선호도 예측 정확도를 비교 실험을 수행한 결과 자카드 유사도 기반 아이템 협업 필터링 기법이 타 방법에 비해 높은 정확도를 보이는 것을 확인할 수 있었다.

그래프 학습을 통한 시공간 Attention Network 기반 POI 추천 (Spatial-temporal attention network-based POI recommendation through graph learning)

  • 조강;조인휘
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.399-401
    • /
    • 2022
  • POI (Point-of-Interest) 추천은 다양한 위치 기반 서비스에서 중요한 역할을 있다. 기존 연구에서는 사용자의 모바일 선호도를 모델링하기 위해 과거의 체크인의 공간-시간적 관계를 추출한다. 그러나 사용자 궤적에 숨겨진 개인 방문 경향을 반영할 수 있는 structured feature 는 잘 활용되지 않는다. 이 논문에서는 궤적 그래프를 결합한 시공간 인식 attention 네트워크를 제안한다. 개인의 선호도가 시간이 지남에 따라 변할 수 있다는 점을 고려하면 Dynamic GCN (Graph Convolution Network) 모듈은 POI 들의 공간적 상관관계를 동적으로 집계할 수 있다. LBSN (Location-Based Social Networks) 데이터 세트에서 검증된 새 모델은 기존 모델보다 약 9.0% 성능이 뛰어나다.

방문지 추천을 위한 개인 행동 범주 예측 (Predicting personal activity categories for POI recommendation)

  • 황병일;김동주
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.5-6
    • /
    • 2023
  • 본 연구에서는 언텍트 소비가 일반화됨에 따라 소상공인들을 지원하기 위해 캡티브-포털을 활용하여 주문하는 등의 시스템을 구축하고 있으며, 이에 상권 내 방문자들의 주문 정보를 기반으로 개인의 선호나 취향을 고려하고 기존 방문 순서를 고려하여 다음 방문지를 추천할 수 있는 모델을 개발하고자 한다. 모델 개발을 위한 데이터셋으로는 캡티브-포털을 통해 수집되는 변수 항목과 유사한 위치기반 SNS 데이터인 Foursquare 데이터를 활용했다. 본 논문에서는 데이터셋의 변수 중 상호명을 기반으로 22개의 행동 유형 카테고리로 묶어 현재 행동 유형 이후에 다음에 이어질 행동 유형을 예측하는 것을 제안한다. 개인 별 세션 기반의 데이터셋을 LightMove 알고리즘을 활용하여 행동유형 예측을 임베딩 차원의 변경하여 실험한 결과 500차원에서 Top-5가 82.72의 성능을 보임을 확인했다. 향후 국내 상권에 맞는 방문지 추천 시스템이 개발된다면 방문지 추천을 활용하여 다양한 마케팅 전략을 수립이 가능해질 수 있고, 이를 통해 지역 상권이 활성화될 것으로 기대된다.

  • PDF