• Title/Summary/Keyword: POD 기법

Search Result 55, Processing Time 0.021 seconds

Performance Evaluation of Snow Detection Using Himawari-8 AHI Data (Himawari-8 AHI 적설 탐지의 성능 평가)

  • Jin, Donghyun;Lee, Kyeong-sang;Seo, Minji;Choi, Sungwon;Seong, Noh-hun;Lee, Eunkyung;Han, Hyeon-gyeong;Han, Kyung-soo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1025-1032
    • /
    • 2018
  • Snow Cover is a form of precipitation that is defined by snow on the surface and is the single largest component of the cryosphere that plays an important role in maintaining the energy balance between the earth's surface and the atmosphere. It affects the regulation of the Earth's surface temperature. However, since snow cover is mainly distributed in area where human access is difficult, snow cover detection using satellites is actively performed, and snow cover detection in forest area is an important process as well as distinguishing between cloud and snow. In this study, we applied the Normalized Difference Snow Index (NDSI) and the Normalized Difference Vegetation Index (NDVI) to the geostationary satellites for the snow detection of forest area in existing polar orbit satellites. On the rest of the forest area, the snow cover detection using $R_{1.61{\mu}m}$ anomaly technique and NDSI was performed. As a result of the indirect validation using the snow cover data and the Visible Infrared Imaging Radiometer (VIIRS) snow cover data, the probability of detection (POD) was 99.95 % and the False Alarm Ratio (FAR) was 16.63 %. We also performed qualitative validation using the Himawari-8 Advanced Himawari Imager (AHI) RGB image. The result showed that the areas detected by the VIIRS Snow Cover miss pixel are mixed with the area detected by the research false pixel.

Green Algae Detection in the Middle·Downstream of Nakdong River Using High-Resolution Satellite Data (고해상도 위성영상을 활용한 낙동강 녹조탐지기법 비교 및 분석)

  • Byeon, Yugyeong;Seo, Minji;Jin, Donghyun;Jung, Daeseong;Woo, Jongho;Jeon, Uujin;Han, Kyung-soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.493-502
    • /
    • 2021
  • Recently, because of changes in temperature and rising water temperatures due to increased pollution sources, many algae have been produced in the water system. Therefore, there has been a lot of research using satellite images for the generation and monitoring of green algae. However, in prior studies, it is difficult to consider the optical properties of the local water system by using only a single index, and by using medium and low-resolution satellite images to conduct large-scale algae detection, there is a problem of accuracy in narrow, broad rivers. Therefore, in this work, we utilize high-resolution images of Sentinel-2 satellites to perform green algae detection on a single index (NDVI, SEI, FGAI) and development index (NDVI & SEI, FGAI & SEI) that mixes single indices. In this study, POD, FAR, and PC values were utilized to evaluate the accuracy of green algae detection algorithms, and the FGAI & SEI index showed the highest accuracy with 98.29% overall accuracy PC.

Improvement of precipitation forecasting skill of ECMWF data using multi-layer perceptron technique (다층퍼셉트론 기법을 이용한 ECMWF 예측자료의 강수예측 정확도 향상)

  • Lee, Seungsoo;Kim, Gayoung;Yoon, Soonjo;An, Hyunuk
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.7
    • /
    • pp.475-482
    • /
    • 2019
  • Subseasonal-to-Seasonal (S2S) prediction information which have 2 weeks to 2 months lead time are expected to be used through many parts of industry fields, but utilizability is not reached to expectation because of lower predictability than weather forecast and mid- /long-term forecast. In this study, we used multi-layer perceptron (MLP) which is one of machine learning technique that was built for regression training in order to improve predictability of S2S precipitation data at South Korea through post-processing. Hindcast information of ECMWF was used for MLP training and the original data were compared with trained outputs based on dichotomous forecast technique. As a result, Bias score, accuracy, and Critical Success Index (CSI) of trained output were improved on average by 59.7%, 124.3% and 88.5%, respectively. Probability of detection (POD) score was decreased on average by 9.5% and the reason was analyzed that ECMWF's model excessively predicted precipitation days. In this study, we confirmed that predictability of ECMWF's S2S information can be improved by post-processing using MLP even the predictability of original data was low. The results of this study can be used to increase the capability of S2S information in water resource and agricultural fields.

A Study on the GK2A/AMI Image Based Cold Water Detection Using Convolutional Neural Network (합성곱신경망을 활용한 천리안위성 2A호 영상 기반의 동해안 냉수대 감지 연구)

  • Park, Sung-Hwan;Kim, Dae-Sun;Kwon, Jae-Il
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1653-1661
    • /
    • 2022
  • In this study, the classification of cold water and normal water based on Geo-Kompsat 2A images was performed. Daily mean surface temperature products provided by the National Meteorological Satellite Center (NMSC) were used, and convolution neural network (CNN) deep learning technique was applied as a classification algorithm. From 2019 to 2022, the cold water occurrence data provided by the National Institute of Fisheries Science (NIFS) were used as the cold water class. As a result of learning, the probability of detection was 82.5% and the false alarm ratio was 54.4%. Through misclassification analysis, it was confirmed that cloud area should be considered and accurate learning data should be considered in the future.

Analysis of Stability Indexes for Lightning by Using Upper Air Observation Data over South Korea (남한에서 낙뢰발생시 근접 고층기상관측 자료를 이용한 안정도 지수 분석)

  • Eom, Hyo-Sik;Suh, Myoung-Seok
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.467-482
    • /
    • 2010
  • In this study, characteristics of various stability indexes (SI) and environmental parameters (EP) for the lightning are analysed by using 5 upper air observatories (Osan, Gwangju, Jeju, Pohang, and Baengnyeongdo) for the years 2002-2006 over South Korea. The analysed SI and EP are the lifted index, K-index, Showalter stability index, total precipitable water, mixing ratio, wind shear and temperature of lifting condensation level. The lightning data occurred on the range of -2 hr~+1 hr and within 100 km based on the launch time of rawinsonde and observing location are selected. In general, summer averaged temperature and mixing ratio of lower troposphere for the lightning cases are higher about 1 K and $1{\sim}2gkg^{-1}$ than no lightning cases, respectively. The Box-Whisker plot shows that the range of various SI and EP values for lightning and no lightning cases are well separated but overlapping of SI and EP values between lightning and no lightning are not a little. The optimized threshold values for the detection of lightning are determined objectively based on the highest Heidke skill socre (HSS), which is the most favorable validation parameter for the rare event, such as lightning, by using the simulation of SI and EP threshold values. Although the HSS is not high (0.15~0.30) and the number and values of selected SI and EP are dependent on geographic location, the new threshold values can be used as a supplementary tool for the detection or forecast of lightning over South Korea.