• 제목/요약/키워드: PM_{10} and PM_{2.5} concentrations

검색결과 1,376건 처리시간 0.027초

실시간 측정을 통한 천안시 대기 중 연간 PM2.5, PM10 농도 특성 조사 (Characterization of Annual PM2.5 and PM10 Concentrations by Real-time Measurements in Cheonan, Chungnam)

  • 허정혁;오세원
    • 한국산학기술학회논문지
    • /
    • 제13권1호
    • /
    • pp.445-450
    • /
    • 2012
  • 2015년 대기환경기준에 추가되는 PM2.5의 천안시 대기 중 오염도를 조사하기 위해, 2010년 2월부터 2011년 1월까지 천안시 상명대학교에 광산란방식의 Dust Monitor를 설치하여 대기 중 연간 PM2.5 농도 특성을 PM10 농도와 같이 조사하였다. 측정 기간 중 연평균 PM2.5 농도는 $40.45{\mu}g/m^3$으로 시행예정인 연평균 기준인 $25{\mu}g/m^3$을 초과하였다. 일평균 PM2.5 농도는 $2.43{\sim}174.84{\mu}g/m^3$으로, 전체 측정 기간 중 약 26%의 측정일이 일평균 기준치인 $50{\mu}g/m^3$을 초과하였다. 같은 기간 중 일평균 PM10 농도 기준을 초과하는 측정일 수는 11%로 나타나, PM2.5의 오염도가 PM10에 비해 상대적으로 심각함을 나타냈다. 계절별로는 봄과 겨울철에 높은 PM2.5 농도를 보였으며, 강우의 영향을 많이 받는 여름철의 PM2.5 오염도가 다른 계절에 비해 상대적으로 낮았다. 일 중 PM2.5의 농도 분포는 출퇴근 시간대에 높은 농도를 나타내는 전형적인 도시형 특성을 나타냈으며, 이는 인위적 배출원 중 이동오염원에 의해 생성되는 미세 입자가 PM2.5의 주요 성분임을 시사한다.

부산지역 최근 4년간(2015~2018년) PM10과 PM2.5농도의 시·공간적 변화 특성 (Spaciotemporal Variation of PM10 and PM2.5 Concentration for 2015 to 2018 in Busan)

  • 전병일
    • 한국환경과학회지
    • /
    • 제29권7호
    • /
    • pp.749-760
    • /
    • 2020
  • This study investigates the characteristics of diurnal, seasonal, and weekly roadside and residential concentrations of PM10 and PM2.5 in Busan, as well as relationship with meteorological phenomenon. Annual mean PM10 and PM2.5 concentrations in Busan were 44.2 ㎍/㎥ and 25.3 ㎍/㎥, respectively. The PM2.5/PM10 concentration ratio was 0.58. Diurnal variations of PM10 and PM2.5 concentrations in Busan were categorized into three types, depending on the number of peaks and times at which the peaks occurred. Roadside PM10 concentration was highest on Saturday and lowest on Friday. Residential PM10 concentration was highest on Monday and lowest on Friday. Residential PM2.5 concentration was highest on Monday and Tuesday and lowest on Friday. PM10 and PM2.5 concentrations were highest on Asian dust and haze, respectively. The results indicate that understanding the spaciotemporal variation of fine particles could provide insights into establishing a strategy to control urban air quality.

Dust Monitor를 이용한 천안시 대기 중 PM10, PM2.5 오염특성 조사 (Characterization of PM10 and PM2.5 in Cheonan Area Using a Dust Monitor)

  • 이현미;오세원
    • 한국대기환경학회지
    • /
    • 제24권3호
    • /
    • pp.367-375
    • /
    • 2008
  • To characterize atmospheric particles in Cheonan area, 5 monitoring sites representing highway area, commercial area, residential area, and industrial areas were selected, and the mass concentrations of PM10 and PM2.5 were monitored for 14 days at each site during 2007. The daily average PM10 and PM2.5 concentrations were in the range from 18.5 to $140.9{\mu}g/m^3$ and 8.2 to $116.6{\mu}g/m^3$, respectively, showing the highest mean concentrations at the commercial area site and the lowest concentration at the residential area site. The daily average PM 10 concentrations at Shinan (Commercial area) and Bakseok (Industrial area) sites were exceeded the current National Standard for 1 and 2 days during the monitoring periods. The fractions of PM2.5 in PM10 were above 70% for all sites, indicating fine particles are the major constituent of atmospheric particles in Cheonan. The results indicate that PM10 concentrations in Cheonan are at the concerning level, and the control strategy for fine particles is necessary to address this issue.

충남지역 대기 중 미세입자 오염 현황 (Concentrations of Atmospheric Fine Particles Measured during 2005 in Chungnam, Korea)

  • 오세원
    • 한국대기환경학회지
    • /
    • 제23권1호
    • /
    • pp.132-140
    • /
    • 2007
  • Concentrations of atmospheric fine particles in Chungnam were measured at 7 sampling sites during 2005. The daily average concentrations of PM 10, PM2.5, and PM1 ranged from 14.9 to $136.5{\mu}g/m^3$, 8.2 to $113.2{\mu}g/m^3$, and 5.7 to $107.5{\mu}g/m^3$, respectively, and the highest levels were observed at Yeongi site. The lowest concentrations for the all size fractions of particulate were observed at Taean located at the west end of the peninsula. The daily average PM10 concentrations were below the current National Standard at all sites, while the daily average PM2.5 concentrations frequently exceeded the US Standard at Cheonan, Dangjin, Boryeong, and Yeongi sites. The frequencies of PM2.5 concentrations exceeding the US standard at Cheonan, Dangjin, Boryeong, and Yeongi were 10.8%, 6.7%, 6.7%, and 26.7%, respectively. In addition, $68{\sim}80%$ of PM10 was in the PM2.5 fraction indicating that fine particles were the major component of atmospheric particles in Chungnam.

봄철 황사 전후 산악연안도시, 강릉시에서 PM1, PM2.5, PM10의 농도비교 (Comparison of PM1, PM2.5, PM10 Concentrations in a Mountainous Coastal City, Gangneung Before and After the Yellow Dust Event in Spring)

  • 최효
    • 한국환경과학회지
    • /
    • 제17권6호
    • /
    • pp.633-645
    • /
    • 2008
  • In order to investigate the variations and corelation among $PM_{10},\;PM_{2.5}\;and\;PM_1$ concentrations, the hourly concentrations of each particle sizes of 300nm to $20{\mu}m$ at a city, Gangneung in the eastern mountainous coast of Korean peninsula have been measured by GRIMM aerosol sampler-1107 from March 7 to 17, 2004. Before the influence of the Yellow Dust event from China toward the city, $PM_{10},\;PM_{2.5}\;and\;PM_1$, concentrations near the ground of the city were very low less than $35.97{\mu}g/m^3,\;22.33{\mu}g/m^3\;and\;16.77{\mu}g/m^3$, with little variations. Under the partial influence of the dust transport from the China on March 9, they increased to $87.08{\mu}g/m^3,\;56.55{\mu}g/m^3\;and\;51.62{\mu}g/m^3$. $PM_{10}$ concentration was 1.5 times higher than $PM_{2.5}$ and 1.85 times higher than $PM_1$. Ratio of $(PM_{10}-PM_{2.5})/PM_{2.5}$ had a maximum value of 1.49 with an averaged 0.5 and one of $(PM_{2.5}-PM_1)/PM_1$ had a maximum value of 0.4 with an averaged 0.25. $PM_{10}\;and\;PM_{2.5}$ concentrations were largely influenced by particles smaller than $2.5{\mu}m\;and\;1{\mu}m$ particle sizes, respectively. During the dust event from the afternoon of March 10 until 1200 LST, March 14, $PM_{10},\;PM_{2.5}\;and\;PM_1$ concentrations reached $343.53{\mu}g/m^3,\;105{\mu}g/m^3\;and\;60{\mu}g/m^3$, indicating the $PM_{10}$ concentration being 3.3 times higher than $PM_{2.5}$ and 5.97 times higher than $PM_1$. Ratio of $(PM_{10}-PM_{2.5})/PM_{2.5}$ had a maximum value of 7.82 with an averaged 3.5 and one of $(PM_{2.5}-PM_1)/PM_1$, had a maximum value of 2.8 with an averaged 1.5, showing $PM_{10}\;and\;PM_{2.5}$ concentrations largely influenced by particles greater than $2.5{\mu}m\;and\;1{\mu}m$ particle sizes, respectively. After the dust event, the most of PM concentrations became below $100{\mu}g/m^3$, except of 0900LST, March 15, showing the gradual decrease of their concentrations. Ratio of $(PM_{10}-PM_{2.5})/PM_{2.5}$ had a maximum value of 3.75 with an averaged 1.6 and one of $(PM_{2.5}-PM_1)/PM_1$ had a maximum value of 1.5 with an averaged 0.8, showing the $PM_{10}$ concentration largely influenced by corse particles than $2.5{\mu}m$ and the $PM_{2.5}$ by fine particles smaller than $1{\mu}m$, respectively. Before the dust event, correlation coefficients between $PM_{10},\;PM_{2.5}\;and\;PM_1$, were 0.89, 0.99 and 0.82, respectively, and during the dust event, the coefficients were 0.71, 0.94 and 0.44. After the dust event, the coefficients were 0.90, 0.99 and 0.85. For whole period, the coefficients were 0.54, 0.95 and 0.28, respectively.

강원도 춘천과 영월에서 측정한 미세먼지 농도 특성 및 고농도 원인 분석 (Characteristics of Fine Particles Measured in Two Different Functional Areas and Identification of Factors Enhancing Their Concentrations)

  • 조성환;김현웅;한영지;김우진
    • 한국대기환경학회지
    • /
    • 제32권1호
    • /
    • pp.100-113
    • /
    • 2016
  • In this study, the characteristics of $PM_{2.5}$ and $PM_{2.5-10}$ concentrations were identified in two different functional areas including Chuncheon and Youngwol, Korea. Even though the anthropogenic emission rates of $PM_{2.5}$ and $PM_{10}$ are approximately four times higher in Youngwol than in Chuncheon their atmospheric concentrations were statistically higher in Chuncheon. In Chuncheon, both $PM_{2.5}$ concentrations and the ratio of $PM_{2.5}/PM_{10}$ increased as relative humidity (RH) increased possibly because the inorganic and/or organic secondary aerosols were actively formed at high RH. This result was also supported by that $PM_{2.5}$ concentration was enhanced under the fog and mist conditions in Chuncheon. On the other hand, both $PM_{2.5}$ and $PM_{2.5-10}$ concentrations clearly increased with the southerly winds blown from the cement production facility in Youngwol. In addition, high $PM_{2.5-10}$ concentrations were observed with high wind speed, low relative humidity, and high $NO_2$ concentrations in Youngwol, suggesting that $PM_{2.5-10}$ was generated through the physical process including crushing and packing procedures followed by resuspension from cement and lime factory.

고정배출원의 먼지 크기별 (PM, PM10, PM2.5) 배출 특성 연구 (The Characterization of PM, PM10, and PM2.5 from Stationary Sources)

  • 김종호;황인조
    • 한국대기환경학회지
    • /
    • 제32권6호
    • /
    • pp.603-612
    • /
    • 2016
  • The objective of this study was to estimate the emission characteristics for PM, $PM_{10}$, and $PM_{2.5}$ in the various stationary sources. The particulate matters collected in the various stationary sources such as power plants (Coal and B-C oil), incinerators(municipal and industrial waste), and glass furnaces. The PM and $PM_{10}$, PM and $PM_{2.5}$, $PM_{10}$ and $PM_{2.5}$ samples were collected using the cyclone type $PM_{10}$, $PM_{2.5}$ samplers and 30 species(19 inorganic species, 9 ionic species, OC and EC) were analyzed by ICP, IC, and TOR/IMPROVE methods. The mass concentrations of PM, $PM_{10}$, $PM_{2.5}$ from nine stationary sources ranged $0.63{\sim}9.58mg/Sm^3$, $0.26{\sim}7.47mg/Sm^3$ and $0.13{\sim}6.34mg/Sm^3$, respectively. The level of $PM_{10}$, $PM_{2.5}$ portion in PM calculated 0.63~0.99, 0.38~0.94, respectively. In the case of emission trend for species, power plant showed high concentrations for Al, Mg, Na, Si, V and $SO_4{^{2-}}$, respectively. Also, Ca, Fe, K, Si, $Cl^-$, and $K^+$ showed high in incinerator. In the case of glass furnace, Na, Pb, K, Si, $Na^+$ and $SO_4{^{2-}}$ represented high concentrations. Power plant showed higher EC/OC concentrations than other sampling sites. These results suggest the possible role for complement establishment process of emission inventory and emission management for PM.

춘천시 미세먼지 농도의 장기변동 추세 (Long-term Trend of Atmospheric Concentrations of Fine Particles in Chuncheon, Korea)

  • 양지혜;김성락;정진희;한영지
    • 한국대기환경학회지
    • /
    • 제27권5호
    • /
    • pp.494-503
    • /
    • 2011
  • Fine particles ($PM_{2.5}$) were collected and analyzed from December 2005 through December 2009 in Chuncheon, Korea to investigate the long-term trend of $PM_{2.5}$ concentrations. Also $PM_{10}$ concentrations were collected from Environmental Monitoring System operated by Ministry of Environment. Average concentrations of $PM_{2.5}$ and $PM_{10}$ were 30.5 and 58.2 ${\mu}g/m^3$, respectively. Both $PM_{2.5}$ and $PM_{10}$ were significantly affected by meteorological factors including wind speed, wind direction and precipitation. They generally decreased as wind speed increased (p=0.000), and increased when there was a prevailing westerly wind. Low concentrations of $PM_{2.5}$ were observed during rainy days while high concentrations were shown when fog, mist and/or haze occurred.

부산 항만 주변지역 PM2.5 농도의 월 변화 및 특성 (Variations in the Monthly PM2.5 Concentrations and their Characteristics around the Busan Seaport Area)

  • 강나연;안준건;이선은;현상민
    • 한국환경과학회지
    • /
    • 제30권10호
    • /
    • pp.845-861
    • /
    • 2021
  • This study investigated the variations in monthly PM2.5 concentrations and their characteristics at the sampling site (35.075°N, 129.080°E) around the Busan seaport area for six months (from August 2020 to January 2021). Monthly PM2.5 concentrations in the filtered samples ranged from 8.4 to 42.3 ㎍/m3 (average=19.6±8.2 ㎍/m3, n=50) and were generally high in August, December, and January, and low in September, October, and November. The variations of monthly PM2.5 concentrations showed similar patterns to those of the neighboring national air quality monitoring sites. The contents of Total Carbon (TC), Organic Carbon (OC), Elemental Carbon (EC), and OC/EC ratios in PM2.5 showed large variability during the study period. The OC/EC ratios ranged from 4.2 to 34.4, suggesting that the relative contributions of OC and EC to the PM2.5 concentrations changed temporally and might be related to their formation sources. Variations in the chemical components of and particle size distributions in PM2.5 showed that high PM2.5 concentrations were affected by various sources, such as sea salt and ship emission. The precursor gas concentrations were discussed in terms of monthly variations and their contributions to PM2.5 concentrations. However, further research is needed to understand the characteristics and behaviors of PM2.5 concentrations around the Busan seaport area.

대기오염과 실내 거주자의 활동도가 교실 내부의 입자 크기별 먼지 농도에 미치는 영향 (The Effect of Outdoor Air and Indoor Human Activity on Mass Concentrations of Size-Selective Particulate in Classrooms)

  • 최상준
    • 한국환경보건학회지
    • /
    • 제34권2호
    • /
    • pp.137-147
    • /
    • 2008
  • This study evaluated the effects of the human activity and outdoor air on concentrations of size-selective particulate matters (PM) by conducting a realtime measurement in classrooms and on roofs at 4 elementary schools, 3 middle schools and 3 high schools in Incheon City. PM concentrations featured repetitive pattern of increasing during break time (including lunch hours) and cleaning time while decreasing during class hours. This trend was more prominent with inhalable PM and PM10 than fine PMs (PM2.5, PM1.0). The indoor/outdoor (I/O) ratio of inhalable PM and PM10 exceeded 1 while that of fine PMs was close to or below 1. The PM2.5 (out)/PM10 (out) ratio stood at 0.59 (${\pm}0.16$) and the PM2.5 (in)/PM10 (in) ratio was 0.29 (${\pm}0.09$), suggesting that occupant activity had a greater effect upon coarse particles (PM10-PM2.5) than upon fine particles (PM2.5, PM1.0). The correlations between the indoor and the outdoor PM concentrations showed a stronger positive correlation for fine particles than that of coarse particles. The linear regression analysis of PM concentrations indoor and outdoor indicated a higher determinant coefficient ($r^2>0.9$), and consistency for fine particles than in case of coarse particles. In conclusion, the results of this study suggest that the indoor coarse particle concentration is more attributed to occupant activity and the indoor fine particle concentration is more influenced by outdoor air pollution.