• Title/Summary/Keyword: PMWS

Search Result 52, Processing Time 0.015 seconds

Comparison of Immune Responses to the PCV2 Replicase-Capsid and Capsid Virus-Like Particle Vaccines in Mice

  • Jung, Bo-Kyoung;Kim, Hye-Ran;Lee, Young-Hyeon;Jang, Hyun;Chang, Kyung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.482-488
    • /
    • 2019
  • Porcine circovirus type 2 (PCV2) is the causative agent of postweaning multisystemic wasting syndrome (PMWS) in pigs. Replicase (Rep) proteins are considered essential for viral replication. Capsid (Cap) protein is the primary immunogenic protein that induces protective immunity. Little is known about comparison on the immunogenicity of PCV2 Rep and Cap fusion protein and Cap protein. In the present study, recombinant baculoviruses expressing the Rep-Cap fusion protein (Bac-Rep-Cap) and the Cap protein (Bac-Cap) of PCV2 were constructed and confirmed with western blot and indirect fluorescence assay. Immunogenicities of the two recombinant proteins were tested in mice. The titers of antibodies were determined with a PCV2-specific enzyme-linked immunosorbent assay (ELISA) and a serum neutralization assay. The $IFN-{\gamma}$ response of immunized mice was measured by ELISA. The mice immunized with the Bac-Rep-Cap and Bac-Cap successfully produced Cap-specific immunoreaction. The mice immunized with the Bac-Cap developed higher PCV2-specific neutralizing antibody titers than mice injected with the Bac-Rep-Cap. $IFN-{\gamma}$ in the Bac-Rep-Cap group was increased compared to those in the Bac-Cap group. Vaccination of mice with the Bac-Rep-Cap showed significantly decreased protective efficacy compared to the Bac-Cap. Our findings will indubitably not only lead to a better understanding of the immunogenicity of PCV2, but also improved vaccines.

Comparison of Weekly and Batch Management System for Sows (모돈의 주간관리와 그룹관리 비교)

  • Jang, Young-Dal;Ju, Won-Seok;Long, Hong-Feng;Piao, Long-Guo;Jang, Sung-Kwon;Chung, Chung-Soo;Kim, Yoo-Yong
    • Journal of Animal Environmental Science
    • /
    • v.15 no.2
    • /
    • pp.171-182
    • /
    • 2009
  • Conventionally, many pig producers have utilized a continual sow managements system that the matings, farrowings and weanings are done weekly basis. But this transitional method is not able to cut the cycle of diseases and fully apply all-in/all-out system because of the continuous flow of sows and pigs. Conventional weekly management system is currently limiting in small farm to work efficiently both for workers and pigs. Therefore, pig producers have found novel management methods for applying all-in/all-out system, improving pig health, leading to better growth, lowering mortality and reducing medication costs nowadays. Moreover, all-in/all-out pig management system has known as a strategy for improving productivity in swine farm. The batch system is one of the best management methods to adopt all-in/all-out pig management system that prevent spreading diseases in pig and remove cycle of diseases. Batch farrowing system is a concept for providing a group of sows that delivery within a specific farrowing interval and inducing a large enough scale of piglets to fill the weaner facilities. There are different types of batch farrowing system with batch size and interval of farrowing when several factors at the swine farm are considered such as total number of sows, available facilities in the farm, and the efficiency of workforce. Sow managements such as farrowing, weaning and breeding, every 3 weeks rather than weekly, 2 or 5-week interval have advantages for workers and reproductive cycle of sows as well as pig flow. Because there are several pros and cons both in weekly and batch management system, various factors should be considered to apply the most suitable management system in each individual farm. To improve poor swine productivity in Korea compared to ED, batch system for sows will be an alternative choice which is able to prevent high incidence of diseases in swine farm such as PMWS, PRRS, PRDC and PED because all-in/all-out pig management can be also applied automatically by using this management system.

  • PDF