• 제목/요약/키워드: PMSG Wind turbine

검색결과 80건 처리시간 0.022초

2 MW 영구자석 직접 구동형 부유식 스파 부이 풍력 발전기의 피칭 운동해석 (Pitching Motion Analysis of Floating Spar-buoy Wind Turbine of 2MW Direct-drive PMSG)

  • 신평호;경남호;최정철;고희상
    • 한국태양에너지학회 논문집
    • /
    • 제37권1호
    • /
    • pp.1-14
    • /
    • 2017
  • A series of coupled time domain simulations considering stochastic waves and wind based on five 1-h time-domain analyses are performed in normal operating conditions. Power performance and tower base Fore-Aft bending moment and pitching motion response of the floating spar-buoy wind turbine with 2 MW direct-drive PMSG have been analyzed by using HAWC2 that account for aero-hydro-servo-elastic time domain simulations. When the floating spar-buoy wind turbine is tilted in the wind direction, maximum of platform pitching motion is close to $4^{\circ}$. Statistical characteristics of tower base Fore-Aft bending moment of floating spar-buoy wind turbine are compared to that of land-based wind turbine. Maximum of tower base Fore-Aft bending moment of floating spar-buoy wind turbine and land-based wind is 94,448 kNm, 40,560 kNm respectively. This results is due to changes in blade pitch angle resulting from relative motion between wave and movement of the floating spar-buoy wind turbine.

가변속 풍력 발전용 영구자석형 동기발전기의 적응 슬라이딩 모드 제어기 설계 (Adaptive Sliding Mode Controller Design of Permanent Magnet Synchronous Generator for Variable-Speed Wind Turbine System)

  • 김성수;최한호
    • 제어로봇시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.315-319
    • /
    • 2016
  • This paper proposes a simple adaptive sliding mode control algorithm for controlling a permanent magnet synchronous generator (PMSG) of a MW-class direct-driven wind turbine system. The proposed adaptive sliding mode controller does not require accurate knowledge of the PMSG parameter or turbine torque values. The proposed controller can accurately track the reference angular speed computed by the maximum power point tracking(MPPT) algorithm. Finally, this paper gives Matlab/Simulink simulation results to verify the practicality and effectiveness of the proposed adaptive sliding mode controller.

Power Smoothening Control of Wind Farms Based on Inertial Effect of Wind Turbine Systems

  • Nguyen, Thanh Hai;Lee, Dong-Choon;Kang, Jong-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.1096-1103
    • /
    • 2014
  • This paper proposes a novel strategy for attenuating the output power fluctuation of the wind farm (WF) in a range of tens of seconds delivered to the grid, where the kinetic energy caused by the large inertia of the wind turbine systems is utilized. A control scheme of the two-level structure is applied to control the wind farm, which consists of a supervisory control of the wind farm and individual wind turbine controls. The supervisory control generates the output power reference of the wind farm, which is filtered out from the available power extracted from the wind by a low-pass filter (LPF). A lead-lag compensator is used for compensating for the phase delay of the output power reference compared with the available power. By this control strategy, when the reference power is lower than the maximum available power, some of individual wind turbines are operated in the storing mode of the kinetic energy by increasing the turbine speeds. Then, these individual wind turbines release the kinetic power by reducing the turbine speed, when the power command is higher than the available power. In addition, the pitch angle control systems of the wind turbines are also employed to limit the turbine speed not higher than the limitation value during the storing mode of kinetic energy. For coordinating the de-rated operation of the WT and the storing or releasing modes of the kinetic energy, the output power fluctuations are reduced by about 20%. The PSCAD/EMTDC simulations have been carried out for a 10-MW wind farm equipped with the permanent-magnet synchronous generator (PMSG) to verify the validity of the proposed method.

영구자석동기발전기 풍력시스템의 하드웨어 시뮬레이터 개발 (Development of Hardware Simulator for PMSG Wind Power System)

  • 윤동진;정종규;양승철;권기현;한병문
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.215-217
    • /
    • 2008
  • This paper describes development of hardware simulator for the PMSG wind power system, which was designed considering wind characteristic, blade characteristic and blade inertia compensation. The simulator generates torque and speed signals for a specific wind turbine with respect to given wind speed. This torque and speed signals are scaled down to fit the input of 2kW PMSG. The PMSG-side converter operates to track the maximum power point, and the grid-side inverter controls the active and reactive power supplied to the grid. The operational feasibility was verified by computer simulations with PSCAD/EMTDC, and the implementation feasibility was confirmed through experimental works with a hardware set-up.

  • PDF

Comparison of MPPT Based on Fuzzy Logic Controls for PMSG

  • Putri, Adinda Ihsani;Choi, Jaeho
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 추계학술대회
    • /
    • pp.285-286
    • /
    • 2011
  • Maximum Power Point Tracker (MPPT) is the big issue in generating power based on Wind Energy Conversion System. In case of unknown turbine characteristic, it is useful to implement MPPT based on fuzzy logic control. This kind of control is able to find the value of duty cycle to meet maximum power point at particular wind speed. There are many methods to develop MPPT based fuzzy logic controls. In this paper, two of the methods are compared both at low and high fluctuating wind speed.

  • PDF

풍력 발전기용 3MW 매립형 영구자석동기발전기 해석 (The Analysis of 3MW Embedded Type PMSG for Wind Turbine)

  • 원정현;이상우;김동언;정진화;박현철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.180.1-180.1
    • /
    • 2010
  • This paper introduces a 3MW embedded Permanent Magnet Synchronous Generator(PMSG) for wind turbine. The generator features 313mm stator inner radius and 974mm stator length. The blade rotor angular velocity is 15.7 rpm and the gear ratio is set to be 92.93. The nominal generator rpm at rated load is about 1459. The number of poles is six and embedded in the generator rotor. Embedded permanent magnet excitation shows higher reliability, and better efficiency. Using the finite element method, electromagnetic and thermal results are simulated by ANSYS and the results are summarized in this report.

  • PDF

소형 풍력발전용 영구자석형 동기발전기의 센서리스 제어 (Sensorless Control of PMSG for Small Wind Turbines)

  • 장석호;박홍극;이동춘;김흥근
    • 전력전자학회논문지
    • /
    • 제14권1호
    • /
    • pp.15-22
    • /
    • 2009
  • 본 논문은 소형 풍력발전용 영구자석형 동기발전기에서 고정자 자속과 역기전력을 이용한 센서리스 제어방법을 제안한다. 기존의 다이오드와 DC-부스트 컨버터를 사용한 소형 풍력발전용 컨버터와는 달리 2-Leg 3상 PWM 컨버터를 사용하여 발전기를 구동한다. 이는 기존의 컨버터와 비교하여 가격적으로 뒤지지 않으며, 발전기의 벡터제어가 가능하여 최대출력 제어시 발전 효율향상을 확인할 수 있다. 그리고 센서리스 제어 알고리즘을 적용하여 속도 측정을 위해 사용되는 엔코더를 제거하므로 시스템의 가격을 저감시킨다. 제안된 알고리즘은 PSIM 시뮬레이션을 사용하여 컨버터 제어 성능과 발전기의 최대 출력 제어의 타당성을 검증한다.

Virtual Inertia Control of D-PMSG Based on the Principle of Active Disturbance Rejection Control

  • Shi, Qiaoming;Wang, Gang;Fu, Lijun;Liu, Yang;Wu, You;Xu, Li
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.1969-1982
    • /
    • 2015
  • The virtual inertia control (VIC) of wind turbine with directly-driven permanent-magnet synchronous generator (D-PMSG) can act similarly to the conventional synchronous generator in inertia response and frequency control, thereby supporting the system frequency stability. However, because the wind speed is inconstant and changeable to a certain extent and the D-PMSG is a complex nonlinear system, there are great difficulties in the virtual inertia optimal control of the D-PMSG. Based on the design principle of the active disturbance rejection control (ADRC), this paper presents a new VIC strategy for the D-PMSG from the perspective of power disturbance suppression in the system. The strategy helps fulfill the power grid disturbance estimation and compensation by means of the extended state observer (ESO) so as to improve the disturbance-resisting performance of the system. Compared with conventional proportional-derivative virtual inertia control (PDVIC), this method, which is of better adaptability and robustness, can not only improve the property of the D-PMSG responding to the system frequency but also reduce the influence of wind speed disturbance. The simulation and experiment results have verified the effectiveness and feasibility of the VIC based on the ADRC.

Super-Twisting Sliding Mode Control Design for Cascaded Control System of PMSG Wind Turbine

  • Phan, Dinh Hieu;Huang, ShouDao
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1358-1366
    • /
    • 2015
  • This study focuses on an advanced second-order sliding mode control strategy for a variable speed wind turbine based on a permanent magnet synchronous generator to maximize wind power extraction while simultaneously reducing the mechanical stress effect. The control design based on a modified version of the super-twisting algorithm with variable gains can be applied to the cascaded system scheme comprising the current control loop and speed control loop. The proposed control inheriting the well-known robustness of the sliding technique successfully deals with the problems of essential nonlinearity of wind turbine systems, the effects of disturbance regarding variation on the parameters, and the random nature of wind speed. In addition, the advantages of the adaptive gains and the smoothness of the control action strongly reduce the chatter signals of wind turbine systems. Finally, with comparison with the traditional super-twisting algorithm, the performance of the system is verified through simulation results under wind speed turbulence and parameter variations.

Modeling and Control of IGBT Converter-Based High-Voltage Direct Current System

  • Kim, Hong-Woo;Ko, Suk-Whan;An, Hae-Joon;Jang, Gil-Soo;Ko, Hee-Sang
    • 조명전기설비학회논문지
    • /
    • 제25권7호
    • /
    • pp.97-104
    • /
    • 2011
  • This paper presents modeling and control for the emerging IGBT converter-based high-voltage direct-current system (IGBT-HVDC). This paper adds to the representation of the IGBT-HVDC system in the dq-synchronous reference frame and its decoupled control scheme. Additionally, since the IGBT-HVDC is able to actively support the grid due to its capacity to control independently active and reactive power production, a reactive power control scheme is presented in order to regulate/contribute to the voltage at a remote location by taking into account its operational state and limits. The ability of the control scheme is assessed and discussed by means of simulations using ahybrid power system, which consists of a permanent magnetic synchronous-generator (PMSG) based wind turbine, an IGBT-HVDC, and a local load.