• Title/Summary/Keyword: PMNZT

Search Result 2, Processing Time 0.018 seconds

Electric and mechanical properties of $ZrO_2$ reinforced Piezoelectric Ceramics ($ZrO_2$ 첨가된 압전 복합체의 전기-기계 특성)

  • Jeong, Soon-Jong;Kim, Min-Soo;Lee, Dae-Su;Park, Eon-Cheol;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.333-334
    • /
    • 2006
  • The objective of this study is to fabricate a piezoelectric composite consisting of a piezoelectric ceramic and a high toughness material and to evaluate their electromechanical properties for high force actuator applications. The mixture of the piezoelectric material, PMNZT, and high toughness material, $ZrO_2$, exhibited high piezoelectric properties as well as good mechanical fracture resistance. Up to 2 vol% of $ZrO_2$ in PMNZT matrix, piezoelectric $d_{33}$ coefficient was above 400 pC/N, being 80% of that for the original PMNZT, and the toughness showed twice of the PMNZT. When the volume fraction of the $ZrO_2$ was above 5%, however, the piezoelectric coefficient became abruptly decreased and it approached 20% of value for the PMNZT.

  • PDF

Effect of CuO Additions on Microstructures and Piezoelectric Properties of the 0.4Pb$(Mg_{1/3}Nb_{2/3})O_3-0.25PbZrO_3-0.35PbTiO_3$ Ceramics (CuO 첨가에 따른 0.4Pb$(Mg_{1/3}Nb_{2/3})O_3-0.25PbZrO_3-0.35PbTiO_3$ 세라믹스의 압전특성과 미세조직의 변화)

  • Jeon, So-Hyun;Kim, Min-Soo;Jeong, Soon-Jong;Kim, In-Sung;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.194-194
    • /
    • 2008
  • Lead oxide based ceramics, represented by PZT, are the most widely used materials for piezoelectric actuators, sensors, and transducers due to their excellent piezoelectric properties. In particular, high-performance multilayered piezoelectric ceramics for advanced electronic components have drawn great attention. In order to develop piezoelectric ceramics capable of being sintered at low temperature for multilayer piezoelectric device applications, the effect of CuO additions on the microstructures and electromechanical properties of the 0.4Pb$(Mg_{1/3}Nb_{2/3})O_3-0.25PbZrO_3-0.35PbTiO_3$ ceramics was investigated. The samples with CuO addition were synthesized by ordinary sintering technique. X-ray diffractions indicated that all samples formed a single phase perovskite structure. The addition of CuO improved the sinterability of the samples and caused an increase in the density and grain size at low temperature. The optimum sintering temperature was lowered by CuO additions. Excellent piezoelectric and electromechanical responses, $d_{33}$ ~ 663 pC/N, $k_p$ ~ 0.72, were obtained for the samples of high density with 0.1 wt% CuO addition sintered at $1050^{\circ}C$ for 4 h in air. These results show that the piezoelectric properties of PMNZT ceramics can be improved by controlling the microstructure and this system is potentially a good candidate as multilayer piezoelectric device for a wide range of electro-mechanical transducer applications.

  • PDF