• Title/Summary/Keyword: PMMA phantom

Search Result 43, Processing Time 0.021 seconds

Evaluation of Image Uniformity and Radiolucency for Computed Tomography Phantom Made of 3-Dimensional Printing of Fused Deposition Modeling Technology by Using Acrylonitrile Butadiene Styrene Resin (아크릴로나이트릴·뷰타다이엔·스타이렌 수지와 용융적층조형 방식의 3차원 프린팅 기술로 제작된 전산화단층영상장치 팬톰에서 영상 균일성 및 X선 투과성 평가)

  • Seoung, Youl-Hun
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.337-344
    • /
    • 2016
  • The purpose of this study was to evaluate the radiolucency for the phantom output to the 3D printing technology. The 3D printing technology was applied for FDM (fused deposition modeling) method and was used the material of ABS (acrylonitrile butadiene styrene) resin. The phantom was designed in cylindrical uniformity. An image uniformity was measured by a cross-sectional images of the 3D printed phantom obtained from the CT equipment. The evaluation of radiolucency was measured exposure dose by the inserted ion-chamber from the 3D printed phantom. As a results, the average of uniformity in the cross-sectional CT image was 2.70 HU and the correlation of radiolucency between PMMA CT phantom and 3D printed ABS phantom is found to have a high correlation to 0.976. In the future, this results will be expected to be used as the basis for the phantom production of the radiation quality control by used 3D printing technology.

Application of Total Variation Algorithm in X-ray Phantom Image with Various Added Filter Thickness : GATE Simulation Study (다양한 두께의 부가 여과판을 적용한 X-선 영상에서의 Total Variation 알고리즘 적용 : GATE 시뮬레이션 연구)

  • Park, Taeil;Jang, Sujong;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.773-778
    • /
    • 2019
  • Images using X-rays are essential to diagnosis, but noise is inevitable in the image. To compensate for this, a total variation (TV) algorithm was presented to reduce the patient's exposure dose while increasing the quality of the images. The purpose of this study is to verify the effect on the image quality in radiographic imaging according to the thickness of the additional filtration plate through simulation, and to evaluate the usefulness of the TV algorithm. By using the Geant4 Application for Tomographic Emissions (GATE) simulation image, the actual size, shape and material of the Polymethylmethacrylate (PMMA) phantom were identical, the contrast to noise ratio (CNR) and coefficient of variation (COV) were compared. The results showed that the CNR value was the highest and the COV the lowest when applying the TV algorithm. In addition, we can acquire superior CNR and COV results with 0 mm Al in all algorithm cases.

Evaluation of Radiation Dose and Image Quality according to CT Table Height (CT 테이블 높이에 따른 방사선 선량 및 화질 평가)

  • Lee, Jongwoong;Jung, Hongmoon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.6
    • /
    • pp.453-458
    • /
    • 2017
  • Computed Tomography (CT) provides information on the Diagnostic Reference Level Computed Tomography Dose Index (CTDI) and Dose Length Product (DLP) for accurate diagnosis of patients. However, it does not provide a dose change according to the table height for the diagnostic reference level provided by the CT equipment. The purpose of this study was to evaluate the image and dose according to the table height change using phantom (PMMA: Polymethyl Methacrylate) in order to find the optimal image and the minimum dose during computed tomography examination. When examining using a 32 cm PMMA phantom with the same thickness as the abdomen of an adult, there was little change in dose with table height. However, the noise evaluation of the image caused a high fluctuation of noise depending on the table height. and in the case of the 16 cm PMMA phantom, the change of the noise was small, but the dose change was about 30%. In conclusion, the location of the patient and the center of the detector are important during computed tomography (CT) examinations. In addition, table height setting is considered to be important for examinations with optimized image and minimum dose.

Development and Evaluation of the Usefulness for Hoffman Brain Phantom Based on 3D Printing Technique (3D 프린팅 기법 기반의 Hoffman Brain 팬텀 개발 및 유용성 평가)

  • Park, Hoon-Hee;Lee, Joo-Young
    • Journal of radiological science and technology
    • /
    • v.42 no.6
    • /
    • pp.441-446
    • /
    • 2019
  • The purpose of this paper is to recognize the usefulness of the Phantom produced with 3D printing technology by reproducing the original phantom with 3D printing technology. Using CT, we obtained information from the original phantom. The acquired file was printed by the SLA method of ABS materials. For inspection, SPECT/CT was used to obtain images. We filled the both Phantom with a solution mixed with 99mTcO4 1 mCi in 1 liter of water and acq uired images in accordance with the standard protocol. Using Image J, the SNR for each slice of the image was obtained. As a reference images, AC images were used. For the analysis of acquired images, ROI was set in the White mater and Gray mater sections of each image, and the average Intensity Value within the ROI were compared. According to the results of this study, 3D printed phantom's SNR is about 0.1 higher than the conventional phantom. And the ratio of Intensity Value was shown in the original 1 : 3.4, and the printed phantom was shown to be 1 : 3.2. Therefore, if Calibration Value is applied, It is assumed that it can be used as an alternative to the original.

Comparison Evaluation of Image Quality with Different Thickness of Aluminum added Filter using GATE Simulation in Digital Radiography (GATE 시뮬레이션을 사용한 알루미늄 부가필터 두께에 따른 Digital Radiography의 영상 화질 비교 평가)

  • Oh, Minju;Hong, Joo-Wan;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.81-86
    • /
    • 2019
  • In X-ray image, the role of filtration through the filter is to reduce the exposure of the patient by using photon which is useful in formation of the image, and at the same time, enhance the contrast of the image. During interaction between photon and object, low energy X-rays are absorbed from the site of a few cm of the first patient's tissue, and high energy X-rays are the one which form the image. Therefore, the radiation filter absorbs low energy X-ray in order to lower the exposure of the patient and improve the quality of the image. The purpose of this study is to compare the effect on the image quality by differences of added filter through simulation image and actual radiation image. For that purpose, we used Geant4 Application for Tomographic Emission (GATE) as a tool for Monte Carlo simulation. We set actual size, shape and material of Polymethylmethacrylate (PMMA) Phantom on GATE and differentiated the parameter of added filter. Also, we took image of PMMA phantom with same parameter of added filter by digital radiography (DR). Than we performed contrast-to-noise ratio (CNR) evaluation on both simulation image and actual DR image by Image J. Finally, we observed the effect on image quality due to different thickness of added filter, and compared two images' CNR evaluation's transitions of change. The result of this experiment showed decreasing in the progress of CNR on both DR and simulation image. It is ultimately caused by decreasing in contrast on image. In theory, contrast decrease with kVp increased. Given that condition, this study found out that filter makes not only decreasing total dose by absorbing low energy of X-ray, but also increasing average energy of X-ray.

Evaluation of Image Quality for Scattered X-rays using in Digital Radiography (디지털방사선영상에서 산란선의 영상특성 평가)

  • Kim, Hansol;Kim, Changsoo
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.395-403
    • /
    • 2022
  • Flat-panel detector (FPD) used in digital radiographic imaging systems was used to perform a quantitative power spectrum evaluation as a result of the thickness change of polymethyl methacrylate (PMMA), a tissue equivalent. As the PMMA thickness increases with the resolution-chart phantom image, the effect of the scattering line increases, indicating that the modulation characteristics decrease, and the image is bright. The results show that the noise of the image increases, and noise-power spectral images are obtained by Fourier transform to confirm by spatial frequency. Thus, it can be verified that the PMMA thickness and noise are proportional through the result of evaluating the change of resolution characteristics and representing the 2D noise-power spectrum as one-dimensional values by evaluating the change of scattering line with MTF as the PMMA thickness increases in the image.

Measurement of Relative Depth dose of Therapeutic Photon Beam Using One-Dimensional Fiber-Optic Phantom Dosimeter (1차원 광섬유 팬텀선량계를 이용한 치료용 광자선의 피부 및 선량보강영역에서 상대선량 측정)

  • Moon, Jin-Soo;Jang, Kyoung-Won;Yoo, Wook-Jae;Seo, Jeong-Ki;Park, Jang-Yeon;Cho, Young-Ho;Lee, Bong-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.96-101
    • /
    • 2011
  • In this study, we fabricated a fiber-optic phantom dosimeter by arraying square type of plastic optical fibers in a PMMA phantom for measuring relative depth doses of therapeutic photon beams. To minimize the cross-talk between fiber-optic dosimeters, we selected appropriate septum by measuring leaked scintillating lights according to the various kinds of septa. In addition, we measured percentage depth doses of 6, 15 MV photon beams using a fiber-optic phantom dosimeter.

Contribution of light in high-energy film dosimetry using water substitute phantoms

  • Fujisaki, Tatsuya;Saitoh, Hidetoshi;Hiraoka, Takeshi;Kuwabara, Akio;Abe, Shinji;Inada, Tetsuo
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.272-274
    • /
    • 2002
  • The contribution of light in high-energy film dosimetry was examined using six commercially available solid water substitute phantoms. As six commercially available phantoms; RMI-451, Mix-DP, WE211, WE211-Black, PMMA and PMMA Black were evaluated in this study. It is difficult to evaluate the contribution of Cerenkov radiation and the optical permeability to the relative and/or absolute dosimetry using unpacked film in these phantoms. Therefore the contribution of Cerenkov radiation was estimated by the comparison between film densities in the shielded side (shutting off the light) and unshielded sides on a phantom. The effect of optical permeability was measured under ambient light by the time scale method. The results suggest that the use of black colored phantoms may improve the accuracy of dose measurement in film dosimetry.

  • PDF

Fabrication and Characterization of a One-dimensional Fiber-optic Dosimeter for Electron Beam Therapy Dosimetry (치료용 전자선 계측을 위한 1차원 광섬유 방사선량계의 제작 및 특성분석)

  • Jang, Kyoung-Won;Cho, Dong-Hyun;Shin, Sang-Hun;Yoo, Wook-Jae;Jun, Jae-Hun;Lee, Bong-Soo;Moon, Joo-Hyun;Park, Byung-Gi
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.285-290
    • /
    • 2008
  • In this study, we have fabricated a one-dimensional fiber-optic dosimeter for electron beam therapy dosimetry. Each fiber-optic dosimeter has an organic scintillator with a plastic optical fiber and it is embedded and arrayed in the plastic phantom to measure one-dimensional high energy electron beam profile of clinical linear accelerator. The scintillating lights generated from each sensor probe are guided by plastic optical fibers to the multi-channel photodiode amplifier system. We have measured one-dimensional electron beam profiles in a PMMA phantom according to different field sizes and energies of electron beam. Also, the isodose and three-dimensional percent depth dose curves in a PMMA phantom are obtained using a one-dimensional fiber-optic dosimeter with different electron beam energies.

  • PDF