• Title/Summary/Keyword: PMMA 판

Search Result 28, Processing Time 0.026 seconds

Simulation for the LGP with concentric circle patterns of nanometer size (나노미터 크기의 동심원 패턴이 형성된 도광판 전산모사)

  • Chung, Jae-Hoon;Kim, Ung-Kie;Kim, Kyung-Rae;Hong, Chin-Soo;Lee, Byoung-Wook;Lee, Jong-Ha;Lee, Tae-Sung;Lee, Keun-Woo;Kim, Chang-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.142-143
    • /
    • 2007
  • 나노미터 크기의 동심원 패턴이 형성된 도광판을 설계하기 위한 전산모사를 수행한다. 광원은 LED 1개를 사용하였으며 PMMA 도광판 재질의 파장에 따른 빛의 흡수 현상을 고려하였다. 도광판 위치에 따른 투과광선의 세기 분포, 투과광선의 투과각도 분포 및 편광에 따라 투과광선의 세기가 어떻게 달라지는지 살펴보았다.

  • PDF

A Study on the Preparation and Application of UV-curing Anti-Static Agent (자외선 경화형 대전방지제의 합성 및 응용연구)

  • Kim Jin-Hyang;Ha Jin-Wook
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.06a
    • /
    • pp.264-266
    • /
    • 2004
  • 본 연구에서는 4차 암모늄염의 대전방지 현상을 알아보기 위하여 아크릴기가 있는 2-(dimethyl amino)ethyl methacrylate(DMA)를 알킬화 시켜 대전방지제를 합성하고, 자외선 경화 반응을 통해 대전방지 기능이 지속적으로 유지되게 하였다. 여기에서 얻어진 대전방지제를 PMMA 판에 코팅하여 코팅 도막의 전기저항의 변화를 관찰한 결과, 대전방지제의 함량이 20part 이상으로 높아질 때 표면저항 값이 낮아지는 현상을 볼 수 있었다. 또한 대전방지제의 함량이 10part인 경우, 상대습도가 $20\%$ 증가할 때 저항 값은 $10^2{\Omega}/cm^2$까지 감소하는 결과를 볼 수 있었다.

  • PDF

Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing and nano-imprinting methods (태양전지 모듈용 반사방지막 제작)

  • Lee, Heon;Han, Kang-Su;Sin, Ju-Hyeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.103-103
    • /
    • 2009
  • 태양전지 모듈의 효율 상승을 위한 한 가지 방법으로써 태양전지 모듈에 보호층으로 사용되는 고분자 플레이트 및 보호 유리층 등에 저반사 효과를 갖는 나노급 크기의 패턴을 형성 하였다. PVC, PMMA 등의 고분자 소재의 보호층은 hot-embossing의 방법을 사용하여 표면에 반사방지막을 형성하였으며, 양면 동시 엠보싱 방법을 사용하여 그 효율을 높이고자 하였다. 또한 저철분 유리판 위에 nano-imprinting 공정을 사용한 고분자 패턴을 형성함으로써 반사 방지효과를 얻고자 하였다. 또한, 형성된 패턴의 내구성을 측정함으로써 태양전지 모듈에의 적용 가능성을 확인 하였다.

  • PDF

Optical Characteristics of LGP with Periodic 200 nm Nano-sized Patterned Array (200 nm급 원기둥 어레이 패턴이 형성된 도광판의 광 특성 해석)

  • Jong, Jae-Hoon;Hong, Chin-Soo;Lim, Myung-Hoon;Kim, Tae-Kyung;Lee, B.W.;Lee, J.H.;Lee, K.W.;Lee, T.S.;Kim, C.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.448-449
    • /
    • 2007
  • The PMMA plates with periodic ~200 nm nanosized patterned array were fabricated through the nanoimprint technique with their proper Ni stamper. The computer coding was also made with the Mathematica language software via RCWA (Rigorous Continuous Wave Analysis) and it is confirmed that simulation results are in good agreement with the experimental ones.

  • PDF

A Study on the Simulation and DSF Molding of V-groove Type Light Guide for a Backlight Unit (백라이트 유닛용 V-그루브 도광판의 전산모사 및 DSF성형에 관한 비교연구)

  • Cho K. H.;Yoon K. H.
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.282-290
    • /
    • 2005
  • Nowadays, TFT-LCD is widely used as display unit of many digital devices. And, the backlight unit(BLU) is used as a light source of TFT-LCD module. In the backlight unit, the most important component is a light guide, which guides the input light to the TFT-LCD module uniformly. Recently, many researchers have focused on improving the efficiency of BLU by changing the design and structure of a light guide. In the present paper, a series of simulation was performed to find the optimal luminance distribution of emanated light from the given geometry as the first step. From the results of simulations for the light guide with given V-groove pattern, the emanated light from it is mostly affected by the groove angle. In the case of acute angle, about 74 degrees was found as optimal angle to satisfy the restrictions of angular luminance distribution, FWHM, the maximum luminance, etc. However, as far as the average luminance value was concerned, the case of 120 degrees(abtuse angle) was found to be the best while prism films were added to the BLU. As a next step the light guide samples of 74 and 120 degrees were manufactured by DSF method, which was recently proposed by the authors. Of course, most of design parameters were chosen by the aid of simulation results. Finally, the results of average luminance values were compared between the simulation and DSF molded samples.

A Biomechanical Study on the Various Factors of Vertebroplasty Using Image Analysis and Finite Element Analysis (의료영상 분석과 유한요소법을 통한 추체 성형술의 다양한 인자들에 대한 생체 역학적 효과 분석)

  • 전봉재;권순영;이창섭;탁계래;이권용;이성재
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.171-182
    • /
    • 2004
  • This study investigates the biomechanical efficacies of vertebroplasty which is used to treat vertebral body fracture with bone cement augmentation for osteoporotic patients using image and finite element analysis. Simulated models were divided into two groups: (a) a vertebral body, (b) a functional spinal unit(FSU). For a vertebral body model, the maximum axial displacement was investigated under axial compression to evaluate the effect of structural integrity. The stiffness of each FE model simulated was normalized by the stiffness of intact model. In the case of FSU model, 3 types of compression fractures were formulated to assess the influence on spinal curvature changes. The FSU models were loaded under compressive pressure to calculate the change of spinal curvature. The results according to the various factors suggest that vertebroplasty has the biomechanical efficacy of the increment of structural reinforcement in a patient who has relatively high level of BMD and a patient with the amount of 15%, PMMA injection of the cancellous bone volume. The spinal curvatures after compression fracture simulation vary from 9$^{\circ}$ to 17$^{\circ}$ of kyphosis compared to that the spinal curvature of normal model was -2.8$^{\circ}$ of lordosis. These spinal curvature changes cause the severe spinal deformity under the same loading. As the degree of compressive fracture increases the spinal deformity also increases. The results indicate that vertebroplasty has the increasing effect of the structural integrity regardless of the amount of PMMA or BMD and the restoration of decreased vertebral body height may be an important factor when the compressive fracture caused the significant height loss of vertebral body.

A CT Simulator Phantom for Geometrica1 Test (CT 시뮬레이터의 기하학적 성능평가용 팬톰)

  • Min, Chul-Kee;Yi, Byong-Yong;Ahn, Seung-Do;Choi, Eun-Kyung;Chang, Hye-Sook
    • Radiation Oncology Journal
    • /
    • v.18 no.4
    • /
    • pp.337-344
    • /
    • 2000
  • Purpose :To design and test test CT simulator phantom for geometrical test. Materials and Methods : The PMMA phantom was designed as a cylinder which is 20 cm in diameter and 24 cm in length, along with a 25$\times25\times31cm^{3}$ rectangular parallelepiped. Radio-opaque wires of which diameter is 0.8 mm are attached on the other surface of the phantom as a spiral. The rectangular phantom was made of four 24$\times24\times0.5 cm^{3}$ square plates and each plate had a 24$\times24 cm^{2}$, 12$\times12cm^{2}$, 6$\times6 cm$^{2}$ square line. The squares were placed to face the cylinder at angles 0 $^{\circ}$ , 15 $^{\circ}$ , 30 $^{\circ}$ ,respectively. The rectangular phantom made it possible to measure the field size, couch angle, the collimator angle, the isocenter shift and the SSD, the measurements of the gantry angle from the cylindrical part. A virtual simulation software, AcOSim, offered various conditions to perform virtual simulations and these results were used to perform the geometrical Quality assurance of CT simulator. Results : A 0.3$\~$0.5 mm difference was found on the 24 cm field size which was created with the DRR measurements obtained by scanning of the rectangular phantom. The isocenter shift, the collimator rotation, the couch rotation, and the gantry rotation test showed 0.5$\~$1 mm, 0.5$\~$l$^{\circ}$ 0.5$\~$ 1$^{\circ}$ , and 0.5-1 $^{\circ}$ differences, respectively. We could not find any significant differences between the results from the two scanning methods. Conclusion :The geometrical test phantom developed in the study showed less than 1 mm (or 1 $^{\circ}$ ) differences. The phantom could be used as a routine geometrical QC/QA tools, since the differences are within clinically acceptable ranges.

  • PDF

Development of Manual Multi-Leaf Collimator for Proton Therapy in National Cancer Center (국립암센터의 양성자 치료를 위한 수동형 다엽 콜리메이터 개발)

  • Lee, Nuri;Kim, Tae Yoon;Kang, Dong Yun;Choi, Jae Hyock;Jeong, Jong Hwi;Shin, Dongho;Lim, Young Kyung;Park, Jeonghoon;Kim, Tae Hyun;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.250-257
    • /
    • 2015
  • Multi-leaf collimator (MLC) systems are frequently used to deliver photon-based radiation, and allow conformal shaping of treatment beams. Many proton beam centers currently make use of aperture and snout systems, which involve use of a snout to shape and focus the proton beam, a brass aperture to modify field shape, and an acrylic compensator to modulate depth. However, it needs a lot of time and cost of preparing treatment, therefore, we developed the manual MLC for solving this problem. This study was carried out with the intent of designing an MLC system as an alternative to an aperture block system. Radio-activation and dose due to primary proton beam leakage and the presence of secondary neutrons were taken into account during these iterations. Analytical calculations were used to study the effects of leaf material on activation. We have fabricated tray model for adoption with a wobbling snout ($30{\times}40cm^2$) system which used uniform scanning beam. We designed the manual MLC and tray and can reduce the cost and time for treatment. After leakage test of new tray, we upgrade the tray with brass and made the safety tool. First, we have tested the radio-activation with usually brass and new brass for new manual MLC. It shows similar behavior and decay trend. In addition, we have measured the leakage test of a gantry with new tray and MLC tray, while we exposed the high energy with full modulation process on film dosimetry. The radiation leakage is less than 1%. From these results, we have developed the design of the tray and upgrade for safety. Through the radio-activation behavior, we figure out the proton beam leakage level of safety, where there detects the secondary particle, including neutron. After developing new design of the tray, it will be able to reduce the time and cost of proton treatment. Finally, we have applied in clinic test with original brass aperture and manual MLC and calculated the gamma index, 99.74% between them.