• Title/Summary/Keyword: PMIPv6

Search Result 158, Processing Time 0.026 seconds

Redundant Packet Transmission Control in Fast PMIPv6 Multicast Handover (Fast PMIPv6 멀티캐스트 핸드오버 절차에서 중복패킷 전송 방지 기법 제안)

  • Kim, Joon-ho;Park, Chang-yong;Shon, Minhan;Choo, Hyun-seung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.580-582
    • /
    • 2012
  • 네트워크 기반의 이동성 관리 프로토콜인 PMIPv6(Proxy Mobile IPv6)에서 방송이나 비디오 스트리밍과 같은 서비스를 제공할 때 멀티캐스트 방식을 이용하여 데이터 패킷을 전송하는 기법이 제안되었다. 제안되었던 기법은 MN(Mobile Node)이 핸드오버할 때 nMAG(new Mobile Access Gateway) 내에 같은 멀티캐스트 멤버인 또 다른 MN이 존재할 경우를 고려하지 않았다. 본 논문에서는 같은 멀티캐스트 멤버인 MN이 존재할 경우 버퍼링된 패킷들의 중복 전송을 막는 기법에 대해 제안한다. 이 후 MN이 nMAG로 핸드오버했을 때 같은 멀티캐스트 멤버를 가진다면 버퍼링된 패킷을 현재 핸드오버한 MN에만 포워딩하여 중복 전송되는 것을 방지한다.

Analysis of a NEMO enabled PMIPv6 based Mobility Support for an Efficient Information Transmission

  • Caytiles, Ronnie D.;Park, Byungjoo
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.197-205
    • /
    • 2018
  • Nowadays, wireless sensor networks (WSNs) have been widely adopted in structural health monitoring (SHM) systems for social overhead capital (SOC) public infrastructures. Structural health information, environmental disturbances and sudden changes of weather conditions, damage detections, and external load quantizing are among the capabilities required of SHM systems. These information requires an efficient transmission with which an efficient mobility management support for wireless networks can provide. This paper deals with the analysis of mobility management schemes in order to address the real-time requirement of data traffic delivery for critical SHM information. The host-based and network-based mobility management protocols have been identified and the advantages of network mobility (NEMO) enabled Proxy Mobile Internet Protocol version 6 (PMIPv6) have been leveraged in order to address the SHM information transmission needs. The scheme allows an efficient information transmission as it improves the handover performance due to shortened handover latency as well as reduced signaling overhead.

MPTCP based 3D Transmission Scheme Considering Mobility in PMIPv6 Networks (PMIPv6 환경에서 이동성이 고려된 MPTCP 기반 입체영상 전송 기법)

  • Youn, JooSang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.01a
    • /
    • pp.225-226
    • /
    • 2015
  • 본 논문은 PMIPv6 기반 무선 네트워크 환경에서 입체영상을 송수신하는 멀티인터페이스 이동노드의 핸드오버 수행 시 손실을 최소화하기 위한 MPTCP 기반의 입체영상 전송기법을 제안하다. 제안하는 입체영상 전송 기법은 입체영상 단말 이동 시 멀티인터페이스 간 입체영상으로 정의된 플로우의 플로우 이동성이 수행되며 플로우 이동성 발생 시 단대단 연결 단절 현상을 MPTCP Sublflow 기능을 통해 극복한다. 기존 기법에 비해 제안하는 기법은 데이터 손실 및 단대단 지연을 최소화하며 이동성 환경에서 입체영상의 좌우영상 싱크문제를 극복하는 방법이다.

  • PDF

Analytical Approach of New Random-walk Based Mobility Management Scheme in IP-based Mobile Networks

  • Song, Myungseok;Cho, Jun-Dong;Jeong, Jongpil
    • International Journal of Advanced Culture Technology
    • /
    • v.2 no.1
    • /
    • pp.1-13
    • /
    • 2014
  • In next-generation wireless networks, provisioning of IP-based network architecture and seamless transmission services are very important issues for mobile nodes. For this reason, a mobility management mechanism to support global roaming is highly regarded. These technologies bring a broader life by using a global roaming account through the connection of multiple devices or technology to mobile users; they also provide real-time multimedia services. This paper presents a comprehensive performance analysis of fast handover for hierarchical mobile IPv6 (F-HMIPv6), hierarchical mobile IPv6 (HMIPv6), Proxy Mobile IPv6 (PMIPv6), and fast Proxy Mobile IPv6 (FPMIPv6) using the fluid-flow model and random-walk model. As a result, the location update cost of the PMIPv6 and FPMIPv6 is better than that of HMIPv6 and F-HMIPv6. These results suggest that the network-based mobility management technology is superior to the hierarchical mobility management technology in the mobility environment.

Analytical Approach of Multicasting-based Fast Mobility Management Scheme in Proxy Mobile IPv6 Networks (프록시 모바일 IPv6 네트워크에서 멀티캐스팅기반 빠른 이동성관리 기법의 분석적 접근법)

  • Kim, Young Hoon;Jeong, Jong Pil
    • Journal of Internet Computing and Services
    • /
    • v.14 no.3
    • /
    • pp.67-79
    • /
    • 2013
  • In wireless networks, efficient mobility management to support of mobile users is very important. Several mobility management schemeshave been proposed with the aim of reducing the signaling traffic of MN(Mobile Node). Among them, PMIPv6 (Proxy Mobile IPv6) is similar with host-based mobility management protocols but MN does not require any process for mobility. By introducing new mobile agent like MAG (Mobile Access Gateway) and LMA (Local Mobility Anchor), it provides IP mobility to MN. In this paper, we propose the analytical model to evaluate the mean signalingdelay and the mean bandwidth according to the type of MN mobility. As a result of mathematical analysis, MF-PMIP (Multicasting-based FastPMIP) outperforms compared to F-PMIP and PMIP in terms of parameters for the performance evaluation.

Location Recognition Mechanism of Mobile Node for Fast Handover on Proxy Mobile IPv6 (프록시 모바일 IPv6에서 빠른 핸드오버를 위한 이동단말의 위치인지 메커니즘)

  • Bae, Sang-Wook;Kim, Hee-Min;Oudom, Keo;Han, Sun-Young
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.6
    • /
    • pp.459-465
    • /
    • 2010
  • Mobile IPv6(MIPv6) features have several defects such as overloading of nodes, loss of wireless signals, packet loss, movement problem and so forth. Proxy Mobile IPv6 (PMIPv6) got over the limit of MIPv6 problems. MIPv6 features have several defects such as overloading of nodes, loss of wireless signals, packet loss, movement problem and so forth. Research on PMIPv6, which features network-based mobility is actively in progress in order to resolve these issues. PMIPv6 is emerging as a new paradigm that can overcome the limitations of the existing MIPv6. Nevertheless, such PMIPv6 also incurs problems during hand-over. While it offers a solution to node-based problems, it does, too, create long delay times during hand-over. Since MN (Mobile Node) has been sensing its own movements on MIPv6, fast handover can be done easily. However it can't apply fast handover like MIPv6, as it can't apply fast handover like MIPv6 In this paper, the author solved hand-over problem on MIPv6. MAG knows location information of MN and if MN moves into other MAG's area, Location Server gives MN information to the MAG. Therefore, this mechanism makes hand-over process easier.

Performance Analysis of Proxy-AAA Authentication Scheme in PMIPv6 Networks with Forwarding Mode Supporting (Proxy Mobile IPv6 네트워크에서 포워딩 모드를 지원하는 인증기법의 성능분석)

  • Lee, Seung-Hyun;Shin, Dong-Ryeol;Jeong, Jong-Pil
    • Journal of Internet Computing and Services
    • /
    • v.13 no.1
    • /
    • pp.15-25
    • /
    • 2012
  • Mobile IPv6 (MIPv6) is a host-based protocol supporting global mobility while Proxy Mobile IPv6 (PMIPv6) is a network-based protocol supporting localized mobility. This paper makes its focus on how to reduce the longer delay and extra cost arising from the combination of authentication, authorization and accounting (AAA) and PMIPv6 further. Firstly, a novel authentication scheme (Proxy-AAA) is proposed, which supports fast handover mode and forwarding mode between different local mobility anchors (LMAs). Secondly, a cost analysis model is established based on Proxy-AAA. From the theoretical analysis, it could be noted that the cost is affected by average arrival rate and residence time.

Efficient IP Mobility Management Scheme in Vehicular Networks (차량 통신망에서 성능 효율적인 IP 이동성 관리 기법)

  • Jeon, Jae-Sung;Hong, Kun-Ho;Lee, Su-Kyoung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.6
    • /
    • pp.698-701
    • /
    • 2010
  • Recently, Vehicular Networks is being developed to provide variety of services such as email, ftp, and video streaming services. As IP mobility technology, Proxy Mobile IP is developed to provide these services for a VANET user. By adopting Proxy Mobile IPv6 (PMIPv6), Vehicular Networks can support IP mobility, but it may cause a proxy binding update (PBU) message when a vehicle moves from one MAG to another. In addition, if the density of vehicles on the road is high, significant PBU messages are generated. In this paper, we propose bulk PBU message to reduce signaling overhead by those PBU messages when a bunch of vehicles move from one MAG to another. When the vehicles move from one MAG to another, it generates only one bulk PBU message to update those vehicle's location. Through numerical and simulation results, we show that our proposed bulk registration reduces signaling overhead when the density of vehicles and the speed of them are high.

Design and Simulation of a Flow Mobility Scheme Based on Proxy Mobile IPv6

  • Choi, Hyon-Young;Min, Sung-Gi;Han, Youn-Hee;Koodli, Rajeev
    • Journal of Information Processing Systems
    • /
    • v.8 no.4
    • /
    • pp.603-620
    • /
    • 2012
  • Proxy Mobile IPv6 (PMIPv6) is a network-based mobility support protocol and it does not require Mobile Nodes (MNs) to be involved in the mobility support signaling. In the case when multiple interfaces are active in an MN simultaneously, each data flow can be dynamically allocated to and redirected between different access networks to adapt to the dynamically changing network status and to balance the workload. Such a flow redistribution control is called "flow mobility". In the existing PMIPv6-based flow mobility support, although the MN's logical interface can solve the well-known problems of flow mobility in a heterogeneous network, some missing procedures, such as an MN-derived flow handover, make PMIPv6-based flow mobility incomplete. In this paper, an enhanced flow mobility support is proposed for actualizing the flow mobility support in PMIPv6. The proposed scheme is also based on the MN's logical interface, which hides the physical interfaces from the network layer and above. As new functional modules, the flow interface manager is placed at the MN's logical interface and the flow binding manager in the Local Mobility Anchor (LMA) is paired with the MN's flow interface manager. They manage the flow bindings, and select the proper access technology to send packets. In this paper, we provide the complete flow mobility procedures which begin with the following three different triggering cases: the MN's new connection/disconnection, the LMA's decision, and the MN's request. Simulation using the ns-3 network simulator is performed to verify the proposed procedures and we show the network throughput variation caused by the network offload using the proposed procedures.

An Enhanced Network-based Mobility Management Protocol for Fast Mobility Support

  • Lee, Sung-Kuen;Lee, Kyoung-Hee;Lee, Hyun-Woo;Hong, Seng-Phil;Park, Jin-Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.1997-2015
    • /
    • 2011
  • In this paper, we propose the enhanced network-based mobility management protocol, called enhanced proxy mobile ipv6 (E-PMIPv6), which can provide mobile nodes (MNs) with a fast and efficient mobility service in PMIPv6 domain. The proposed scheme can provide a fast and efficient mobility service to MNs and also the strength of network scalability and stability to an access network by proposing the dynamic virtual hierarchical network architecture. In addition, the pre-authentication procedure for an MN, based on the information of neighbor mobile access gateway (MAG) list in the enhanced-policy server (E-PS), is proposed to support seamless handover by reducing MN's handover latency. Through performance evaluations of numerical analyses and simulations, we have confirmed and verified the superiority of the proposed scheme compared to the conventional proxy mobile ipv6 (PMIPv6).