• Title/Summary/Keyword: PM-10 (Particle matters less than $10{\mu}m$)

Search Result 2, Processing Time 0.021 seconds

Comparative Analysis of the CALPUFF and AERMOD Atmospheric Dispersion Models for Ready-Mixed Concrete Manufacturing Facilities Generating Particulate Matter (미세먼지 발생 레미콘시설에서의 대기확산모델 CALPUFF와 AERMOD 비교 분석)

  • Han, Jin-hee;Kim, Younghee
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.3
    • /
    • pp.267-278
    • /
    • 2021
  • Objectives: Using atmospheric dispersion representative models (AERMOD and CALPUFF), the emissions characteristics of each model were compared and analyzed in ready-mixed concrete manufacturing facilities that generate a large amount of particulate matter (PM-10, PM-2.5). Methods: The target facilities were the ready-mixed concrete manufacturing facilities (Siheung RMC, Goyang RMC, Ganggin RMC) and modeling for each facility was performed by dividing it into construction and operation times. The predicted points for each target facility were selected as 8-12ea (Siheung RMC 10, Goyang RMC 8, and Gangjin RMC 12ea) based on an area within a two-kilometer radius of each project district. The terrain input data was SRTM-3 (January-December 2019). The meteorological input data was divided into surface weather and upper layer weather data, and weather data near the same facility as the target facility was used. The predicted results were presented as a 24-hour average concentration and an annual average concentration. Results: First, overall, CALPUFF showed a tendency to predict higher concentrations than AERMOD. Second, there was almost no difference in the concentration between the two models in non-complex terrain such as in mountainous areas, but in complex terrain, CALPUFF predicted higher concentrations than AERMOD. This is believed to be because CALPUFF better reflected topographic characteristics. Third, both CALPUFF and AERMOD predicted lower concentrations during operation (85.2-99.7%) than during construction, and annual average concentrations (76.4-99.9%) lower than those at 24 hours. Fourth, in the ready-mixed concrete manufacturing facility, PM-10 concentration (about 40 ㎍/m3) was predicted to be higher than PM-2.5 (about 24 ㎍/m3). Conclusions: In complex terrain such as mountainous areas, CALPUFF predicted higher concentrations than AERMOD, which is thought to be because CALPUFF better reflected topographic characteristics. In the future, it is recommended that CALPUFF be used in complex terrain and AERMOD be used in other areas to save modeling time. In a ready-mixed concrete facility, PM-10, which has a relatively large particle size, is generated more than PM-2.5 due to the raw materials used and manufacturing characteristics.

Particulate Matters($PM_{10}$ and Particle-Bound Polycyclic Aromatic Hydrocarbons(PAHs) in Indoor and Outdoor Air in New and Sick Houses

  • Moon, Kyong-Whan;Byeon, Sang-Hoon;Choi, Dal-Woong;Lee, Jang-Hee;Kim, Young-Whan
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.315-318
    • /
    • 2005
  • $PM_{10}$ and 16 PAHs were measured in indoor and outdoor air of 5 different old houses, new and sick houses, respectively. $PM_{10}$ concentrations measured in indoor of three different kinds of houses ranged from 23 to 43 ${\mu}g/m^3$ and in outdoor ranged in 40-64 ${\mu}g/m^3$. Sum of average concentrations of PAHs in old, new and sick houses indoor air were 3.7 $ng/m^3$, 6.6 $ng/m^3$ and 16.1 $ng/m^3$, respectively, which were lower than those of outdoors. Most of the indoor/outdoor ratio for PAHs in each house were less than 1.0 and significant correlation(p<0.05) between indoor and outdoor samples was observed.

  • PDF