• Title/Summary/Keyword: PM type hydrostatic bearing

Search Result 4, Processing Time 0.023 seconds

A Study on the Development of Hydrostatic High Speed Spindle for Grinding Machine (고속 연삭기용 유정압 스핀들 개발에 관한 연구)

  • Kim, Jeong-Suk;Cho, Yong-Kwon;Park, Jin-Hyo;Moon, Hong-Man
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.96-100
    • /
    • 2011
  • The hydrostatic bearings have a relatively small run-out comparing to its shape error by fluid film effect in hydrostatic state as like pneumatic bearing and have a high stiffness, load capacity and damping characteristics. As there is no maintenance and semipermanent in these bearing type, it has been usually adopted as main spindle bearing for grinding machine. In this thesis, to develop hydrostatic bearing for high speed spindle, the cooler setting temperature, bearing clearance and nozzle pressure of belt-driven hydrostatic bearing are investigated. The bearing temperature is decreased, as the cooler setting temperature is lower, nozzle pressure is higher and bearing clearance is wider. The front temperature of bearing is nearly $8^{\circ}C$ higher than the rear one up to 13,000 rpm of spindle revolution. The thermal deflection of X-axis is ${\pm}16\;{\mu}m$ in range of 12,000 rpm-13,000 rpm. Therefore, it is conformed that the built-in motor hydrostatic bearing can be used to high speed spindle.

Compensation of Five DOF Motion Errors in a Ultra Precision Hydrostatic Table Using the Active Controlled Capillaries (능동제어모세관을 이용한 초정밀 유정압테이블의 5 자유도 운동 오차 보정)

  • Park C.H.;Oh Y.J.;Lee H.;Lee D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.769-772
    • /
    • 2005
  • Five DOF motion errors of a hydrostatic bearing table driven by the coreless type linear motor were compensated utilizing the active controlled capillaries in this study. Horizontal linear motion and yaw error were simultaneously compensated using two active controlled capillaries and vertical linear motion, pitch and yaw error were also simultaneously compensated using three active controlled capillaries. By the compensation, horizontal linear motion accuracy and yaw were improved from 0.16 ${\mu}m$ and 1.96 arcsec to 0.02 ${\mu}m$ and 0.03 arcsec. Vertical linear motion accuracy, pitch and roll were also largely improved from 0.18 ${\mu}m$, 2.26 arcsec and 0.14 arcsec upto 0.03 ${\mu}m$, 0.07 arcsec and 0.02 arcsec. The compensated motion errors were within the range of measuring repeatability which was ${\pm}0.02\;{\mu}m$ in the linear motion and ${\pm}0.05$ arcsec in the angular motion. From these results, it is found that the motion error compensation method utilizing the active controlled capillaries are very effective to improve the five motion accuracies of the hydrostatic bearing tables.

  • PDF