• Title/Summary/Keyword: PM motor

Search Result 675, Processing Time 0.028 seconds

A Study of the Miniaturization of the PM type Stepping Motor (Claw-pole을 갖는 PM형 스테핑 모터의 소형화에 관한 연구)

  • Rhyu Se-hyun;Jung In-soung;Sung Ha-kyung;Kwon Byung-il
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.929-931
    • /
    • 2004
  • Recently, there are growing demands for permanent magnet(PM) type stepping motor that greater mechanical output, smaller size. Especially, the PM type stepping motor with claw-poles is preferred solution for many small electronics position determination devices since it is small in size, low cost. But, the design of the PM type stepping motor with claw-poles is very difficult because it has a magnetic 3-D shape. This paper deals with a study of the miniaturization of the PM type stepping motor with claw-poles. We investigate the characteristic of the actual model using the equivalent magnetic circuit method and 3-D FE analysis.

  • PDF

Development of the Micro PM type Stepping Motor with Newly Structure (새로운 구조를 갖는 마이크로 PM형 스테핑 모터 개발)

  • Rhyu, Se-Hyun;Kwon, Byung-Il;Jung, In-Soung;Sung, Ha-Gyeong
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1261-1263
    • /
    • 2005
  • The micro permanent magnet(PM) type stewing motor preferred solution for many small electronics position determination devices since it is small in size. Thus, there are growing demands for PM type stepping motor that greater mechanical output, smaller size. But, the design of the it, having high performance and small size is very difficult because of its complex mechanical structure. This paper deals with a development of the newly structured micro PM type stepping motor with claw-poles. We introduced the small-sized PM type stepping motor that has new structure and analyzed the magnetic characteristic of it versus general type model using 3-D finite element analysis(FEA).

  • PDF

The study for Functional Independence Measure score by fine motor exercise of unaffected hand in the hemiplegic patients (편마비 환자에서 건측 수부의 적극적 미세 운동 제공을 통한 기능적 독립성의 증가에 관한 연구)

  • Chae, Jung-Byung
    • Journal of Korean Physical Therapy Science
    • /
    • v.6 no.4
    • /
    • pp.251-262
    • /
    • 1999
  • This study is designed to evaluate the effects of aggressive fine motor exercise of unaffected hand in the hemiplegic patients. The 36 hemiplegic patients were classified into two groups: The experimental 18, who were treated by aggressive fine motor exercise in unaffected hand and the control, 18, who were treated by conventional exercise program. We evaluate the effects of aggressive fine motor exercise by Functional Independence Measure(FIM) and Jebsen Hand Function Test(JHFT) after 6 weeks program. After exercise program, the experimental group showed score change from $43.05{\pm}15.68$ to $58.05{\pm}17.12$ in FIM score and from $24.12{\pm}22.03$ to $55.44{\pm}21.50$ in Jebsen, and the control showed score change from $51.11{\pm}22.61$ to $57.50{\pm}23.66$ in FIM score and from $40.88{\pm}21.17$ to $52.77{\pm}19.42$ in Jebsen. The experimental group had significantly higher score in FIM and JHFT than that of the control group. The aggressive fine motor exercise is beneficial in unaffected hand in the hemiplegic patients.

  • PDF

Design and Evaluation of a Multi-layer Interior PM Synchronous Motor for High-Speed Drive Applications

  • Kim, Sung-Il;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.405-412
    • /
    • 2016
  • In general, surface mounted PM synchronous motors (SPMSMs) are mainly adopted as a driving motor for high-speed applications, because they have high efficiency and high power density. However, the SPMSMs have some weak points such as the increase of magnetic reluctance and additional losses as a consequence of using a non-magnetic sleeve. Especially, the magneto-motive force (MMF) in the air-gap of the SPMSMs is weakened due to the magnetically increased resistance. For that reason, a large amount of PM is consumed to meet the required MMF. Nevertheless, it cannot help using the sleeve in order to maintain the mechanical integrity of a rotor assembly in high-speed rotation. Thus, in this paper, a multi-layer interior PM synchronous motor (IPMSM) not using the sleeve is presented and designed as an alternative of a SPMSM. Both motors are evaluated by test results based on a variety of characteristics required for an air blower system of a fuel cell electric vehicle.

New Instantaneous Torque Estimation and Control for PM Synchronous Motor (영구자석 동기전동기의 새로운 순시토오크 추정 및 제어)

  • 정세교;김현수;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.23-35
    • /
    • 1998
  • A new instantaneous torque control is presented for a high performance control of a permanent magnet(PM) synchronous motor. In order to deal with the torque pulsating problem of a PM synchronous motor in a low speed region, new torque estimation and cotrol techniques are proposed. The linkage flux of a PM synchronous motor is estimated using a model reference adaptive system technique and the torque is instantaneously controlled by the proposed torque controller combining an integral variable structure control with a space vector PWM. The proposed control provides the advantage of reducing the torque pulsation caused by the non-sinusoidal flux distribution. This control strategy is applied to the high torque PM synchronous motor drive system for direct drive applications and implemented by using a software of the DSP TMS320C30. The simulations and experiments are carried out for this system and the results well demonstrate the effectiveness of proposed control.

Sensorless Sine-Wave Controller IC for PM Brushless Motor Employing Automatic Lead-Angle Compensation

  • Kim, Minki;Heo, Sewan;Oh, Jimin;Suk, Jung-Hee;Yang, Yil Suk;Park, Ki-Tae;Kim, Jinsung
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1165-1175
    • /
    • 2015
  • This paper presents an advanced sensorless permanent magnet (PM) brushless motor controller integrated circuit (IC) employing an automatic lead-angle compensator. The proposed IC is composed of not only a sensorless sine-wave motor controller but also an isolated gate-driver and current self-sensing circuit. The fabricated IC operates in sensorless mode using a position estimator based on a sliding mode observer and an open-loop start-up. For high efficiency PM brushless motor driving, an automatic lead-angle control algorithm is employed, which improves the efficiency of a PM brushless motor system by tracking the minimum copper loss under various load and speed conditions. The fabricated IC is evaluated experimentally using a commercial 200 W PM brushless motor and power switches. The proposed IC is successfully operated without any additional sensors, and the proposed algorithm maintains the minimum current and maximum system efficiency under $0N{\cdot}m$ to $0.8N{\cdot}m$ load conditions. The proposed IC is a feasible sensorless speed controller for various applications with a wide range of load and speed conditions.

Initial Motor Unit Discharge Pattern in Patients with Stroke (뇌졸중 환자에서 운동단위의 초기 방전 양상)

  • Lee, Sang-Moo;Bae, Jae-Chun
    • Annals of Clinical Neurophysiology
    • /
    • v.4 no.1
    • /
    • pp.12-15
    • /
    • 2002
  • Background : Changes in firing pattern and in the recruitment order of single motor unit(MU) have been claimed to be characteristic of central motor lesions, and a reduced firing rate was found in upper motor neuron lesions. But these findings have been rarely studied before in Korea, so we studied initial MU recruitment pattern in stroke patients with hemiparesis. Methods : We studied six patients(3 men and 3 women) whose mean age was $60.6{\pm}7.4$ years. A mean $20.6{\pm}16.2$ months had elapsed since the stroke. To compare the initial MU activation patterns in proximal and distal segments of paretic limb with their contalateral unaffected counterparts, we studied the onset and recruitment intervals in biceps brachii(BB) and first dorsal interossei(FDI) muscles in paretic and healthy arms. In a single muscle we examined from 5 to 10 individual MUs. And in a single motor unit, both the onset interval and the recruitment interval was examined. Results : The mean onset interval in paretic limb was significantly(p<0.05) longer than unaffected limb at proximal and distal location: BB $118.5{\pm}17.8$ msec vs $96.1{\pm}8.3$ msec(n=58); FDI $125.8{\pm}16.7$ msec vs $101.5{\pm}17.2$ msec(n=38). The mean recruitment interval in paretic limb was also significantly(p<0.05) longer than unaffected limb: BB $87.7{\pm}14.9$ msec vs $73.4{\pm}11.5$ msec(n=53); FDI $96.3{\pm}16.4$ msec vs $87.7{\pm}14.1$ msec(n=38). Conclusion : The first recruited MU had a lower baseline firing rate and the second recruited motor unit potential appeared earlier in paretic than in healthy muscles. And these findings may explain one of the reasons for paresis in patients with stroke.

  • PDF

Faults Analysis and Dynamic Simulation Method for Poly-Phase PM Synchronous Motor (다상 영구자석 동기전동기의 고장특성 해석에 관한 연구)

  • Choi, Se-Kwon;Cho, Jun-Seok;Kim, Ju-Yong;Jung, Tae-Uk
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.826_827
    • /
    • 2009
  • This paper introduces major potential faults of Poly-Phase Permanent Magnet Synchronous Motor and their simulation realization methods. The faults of Poly-Phase PM Synchronous Motor, generally, stator turn faults, demagnetizing field. Based on the derived expressions, Poly-Phase PM synchronous Motor simulation model, which is capable of representing stator turn faults, is implemented in Maxwell.

  • PDF

Load-adaptive 180-Degree Sinusoidal Permanent-Magnet Brushless Motor Control Employing Automatic Angle Compensation

  • Kim, Minki;Oh, Jimin;Suk, Jung-Hee;Heo, Sewan;Yang, Yil Suk
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.5
    • /
    • pp.310-316
    • /
    • 2013
  • This paper reports a sinusoidal $180^{\circ}$ drive for a permanent magnet (PM) brushless motor employing automatic angle compensator to suppress the driving loss during the wide-range load operation. The proposed drive of the sinusoidal $180^{\circ}$ PM Brushless motor reduced the amplitude of the 3-phase current by compensating for the lead-angle of the fundamental waves of the 3-phase PWM signal. The conventional lead-angle method was implemented using the fixed angle or memorized table, whereas the proposed method was automatically compensated by calculating the angle of the current and voltage signal. The algorithm of the proposed method was verified in a 30 W PM brushless motor system using a PSIM simulator. The efficiency of the conventional method was decreased 90 % to 60 %, whereas that of proposed method maintained approximately 85 % when the load shift was 0 to $0.02N{\cdot}m$. Using an FPGA prototype, the proposed method was evaluated experimentally in a 30 W PM brushless motor system. The proposed method maintained the minimum phase RMS current and 79 % of the motor efficiency under 0 to $0.09N{\cdot}m$ load conditions. The proposed PM brushless motor driving method is suitable for a variety of applications with a wide range of load conditions.

  • PDF

Sensorless Control of a Surface Mounted PM Synchronous Motor in Over Modulation Regions by Detecting Phase Voltages (영구자석 표면부착형 동기전동기의 과변조 영역에서 상전압 검출에 의한 센서리스 제어)

  • Choi, Hae-Jun;Lee, Han-Sol;Cho, Kwan-Yuhl;Kim, Hag-Wone
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.53-59
    • /
    • 2017
  • The information on the actual voltages and actual currents of the motor is required for the sensorless control of a permanent magnet synchronous motor without rotor position sensors. In the model-based rotor position estimator of a PM synchronous motor, the reference voltages, which are the outputs of the current controller, are commonly used. The reference voltages in over-modulation regions for high-speed operation differ from the actual voltages applied to the motor. Consequently, the estimated rotor position and rotor speed may fail to track the real rotor position and real rotor speed. In this paper, the sensorless control for a PM synchronous motor in over-modulation regions for high-speed operation is proposed. The three-phase voltages applied to the motor are measured by using additional voltage detection circuits, and the performance of the rotor position estimator based on the measured three-phase voltages is validated through the experimental results.