• Title/Summary/Keyword: PM Synchronous Motor

Search Result 200, Processing Time 0.046 seconds

Design and Stability Analysis of a Fuzzy Observer-based Fuzzy Speed Controller for a PM Synchronous Motor (영구자석 동기전동기를 위한 퍼지 관측기 기반의 퍼지 제어기의 설계 및 안정도 해석)

  • Jung,, Jin-Woo;Choi, Young-Sik;Yu, Dong-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • This paper proposes a new fuzzy load torque observer and a fuzzy speed regulator to guarantee a robust speed control of a permanent magnet synchronous motor (PMSM). Also, the LMI conditions are given for the existence of the fuzzy load torque observer and fuzzy speed controller, and the gains of the observer and controller are calculated. The stability of the proposed control system is analytically proven. To validate the effectiveness of the proposed observer-based fuzzy speed controller, the simulation and experimental results are presented. Finally, it is definitely demonstrated that the proposed control algorithm can be used to accurately control the speed of a PM synchronous motor.

Sensorless Control of PM Synchronous Motor Using Adaptive Observer (적응 관측기를 이용한 영구자석 동기전동기의 센서리스 제어)

  • 홍찬호;윤명중
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.60-63
    • /
    • 1997
  • A new approach to the position sensor elimination of PM synchronous motor drives is presented in this study. Using the position sensing characteristics of PMSM itself, the actual rotor position as well as the machine speed can be estimated by adaptive flux observer and used as the feedback signal for the vector controlled PMSM drive. The adaptive speed estimation is achieved by model reference adaptive technique. The adaptive laws are derived by the Popov's hyperstability theory and the positivity concept. In order to verify the effectiveness of the proposed scheme, computer simulations are carried out for the actual parameters of a PM synchronous motor and the results well demonstrate that the proposed scheme provides a good estimation value of the rotor speed without mechanical sensor. It is also shown that the actual rotor position as well as the machine speed can be achieved under the variation of the magnet flux linkage. Since the flux linkages are estimated by the adaptive flux observer and used for the identification of the rotor speed, robust estimation of the rotor speed can be performed.

  • PDF

A Braking Algorithm of a PM synchronous Motor (영구자석 동기전동기의 제동 알고리듬)

  • 조관열;양순배;홍찬희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.313-321
    • /
    • 2002
  • A braking algorithm for a PM synchronous motor is presented. The resistance of the stator windings operates as a braking resistors and dissipates the regenerated power from the rotor without any braking components including the electronic power components and control circuits. The proposed braking algorithm maximizes the power dissipation in the stator windings and also generates the maximum braking torque under the limit conditions of DC link capacitor voltage and inverter currents so that it can minimize the braking time.

Estimation of Rotor Positions in a Permanent-Magnet Synchronous Motor (영구자석형 동기전동기의 회전자 위치 추정)

  • Noh, M.;Kim, D.;Kim, M.;Park, Y.-W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.170-172
    • /
    • 2014
  • Permanent-magnet (PM) synchronous motors consist of PM rotors and ferromagnetic stators. When the rotor displaces from the center position, the air-gap magnetic field distorts, which result in unbalanced magnetic pull (UMP). In order to control the UMP and thereby reduce the vibration of a PM motor, it is necessary to measure the radial position of the rotor. In this paper, we propose a sensing method that utilizes linear Hall devices which replace the discrete Hall switches used for commutation. The results show the feasibility of the proposed sensing method.

  • PDF

The Study on the Characteristic Analysis of Controlled-PM LSM for Maglev Vehicle (제어-영구자석형 자기부상열차의 특성해석에 관한 연구)

  • Lee, Ju;Chun, Yon-Do;Lee, Kwan-Seop
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.450-457
    • /
    • 1998
  • Abstract - Linear Synchronous Motor has a large airgap comparing with rotary-type motor and especially, Permanent Magnet Linear Synchronous Motor(PM-LSM) which uses permanent magnet as a magnetic field, has a very large effective magnet airgap owing to permanent magnet structure. Accordingly, in case of 2-D analysis of the motor, the analysis error becomes large because leakage flux by which normal direction of the analysis region can not be considered, In this paper, the characteristic of PM-LSM for Maglev vehicle is analyzed exactly by 3-D Finite Element Method(3-D FEM). As the result, the effect of lateral-direction airgap magnetic flux density distribution on the analysis precision has been investigated and the motor characteristics according to primary motor parameter have been also made clear quantitatively. The accuracy of 3-D FEM has been confirmed by comparing the calculated results with the experimental results.

  • PDF

A new Instantaneous Torque Control of PM Synchronous Motor for High Performance Direct Drive Systems

  • Chung, Se-Kyo;Kim, Hyun-Soo;Kim, Chang-Gyun;Youn, Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.13-16
    • /
    • 1996
  • A new instantaneous torque control technique is presented for a high performance control of a permanent magnet synchronous motor. Using the model reference adaptive system technique, the linkage flux of the motor is estimated and the torque is instantaneously controlled by the proposed torque controller combining with a variable structure control and space vector PWM. The proposed torque control provides the advantage of reducing the torque pulsation caused by the flux harmonics. This control strategy is applied to the high torque PM synchronous motor drives for direct drive systems and is implemented by using a software of the DSP TMS320C30. The experiments are carried out for this system and the results well demonstrate the effectiveness of the proposed control.

  • PDF

Analysis of influence of parameter error for extended EMF based sensorless control and flux based sensorless control of PM synchronous motor (영구자석 동기전동기의 확장 역기전력 기반 센서리스 제어와 자속기반 센서리스 제어의 파라미터 오차의 영향 분석)

  • Park, Wan-Seo;Cho, Kwan-Yuhl;Kim, Hag-Wone
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.8-15
    • /
    • 2019
  • The PM synchronous motor drives with vector control have been applied to wide fields of industry applications due to its high efficiency. The rotor position information for vector control of a PM synchronous motor is detected from the rotor position sensors or rotor position estimators. The sensorless control based on the mathematical model of PM synchronous motor is generally used and it can be classified into back EMF -based sensorless control and magnet flux-based sensorless control. The rotor position estimating performance of the back EMF-based sensorless control is deteriorated at low speeds since the magnitude of back EMF is proportional to the motor speed. The magnitude of the magnet flux for estimating rotor position in the flux-based sensorless control is independent on the motor speed so that the estimating performance is excellent for wide speed ranges. However, the estimation performance of the model-based sensorless control may be influenced by the motor parameter variation since the rotor position estimator uses the mathematical model of the PM synchronous motor. In this paper, the rotor position estimation performance for the back EMF based- and flux-based sensorless controls is analyzed theoretically and is compared through the simulation and experiment when the motor parameters including stator resistance and inductance are varied.

Starter/Alternator Systems for HEV and Their Control: A Review

  • Boldea, Ion.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.4
    • /
    • pp.157-169
    • /
    • 2004
  • Motor & generator operation at widely variable speeds is needed in various applications but hybrid and electric vehicle (HEV) stand out today, as quite a few companies are launching this year their mass production of HEVs. The quest for better starter-generators is far from ended, though. The present review paper unfolds a comparative critical evaluation of various starter-generators and their control for HEV. Induction, interior PM synchronous, transverse-flux PM synchronous, switched reluctance, together with claw-pole and biaxial excitation PM synchronous (BEGA) configurations with their control are all considered in system evaluations.

Design of a Fuzzy Speed Controller for a Permanent Magnet Synchronous Motor (영구자석 동기전동기의 퍼지 속도제어기 설계)

  • Jung, Jin-Woo;Kim, Tae-Heoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1797-1802
    • /
    • 2010
  • This paper proposes a new fuzzy speed controller based on the Takagi-Sugeno fuzzy method to achieve a robust speed control of a permanent magnet synchronous motor(PMSM). The proposed controller requires the information of the load torque, so the second-order load torque observer is used to estimate it. The LMI condition is derived for the existence of the proposed fuzzy speed controller, and the LMI parameterization to calculate the gain matrices of the controller is provided. It is proven that the augmented control system including the fuzzy speed controller and the load torque observer is exponentially stable. To evaluate the performance of the proposed fuzzy speed controller, the simulation and experimental results are presented under motor parameter and load torque variations. Finally, it is clearly verified that the proposed control method can be used to accurately control the speed of a permanent magnet synchronous motor.

Numerical Investigation on Permanent-Magnet Eddy Current Loss and Harmonic Iron Loss for PM Skewed IPMSM

  • Lim, Jin-Woo;Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.417-422
    • /
    • 2011
  • This paper presents the characteristics of PM eddy current loss and harmonic iron loss for PM step-skewed Interior Permanent Magnet Synchronous Motor (IPMSM) with concentrated windings and multi-layered PM under the running condition of maximum torque per ampere (MTPA) and flux-weakening control. In particular, PM eddy current loss and harmonic iron loss in IPMSM have been numerically computed with three-dimensional Finite Element Analysis (3D FEA), whereby IPMSM with concentrated windings and multi-layered PM has been designed to identify the optimized skew angle contributing to the reduced PM eddy current loss and torque ripples, while maintaining the required average torque. Furthermore, numerical investigation on PM eddy current loss and iron loss at MTPA and flux-weakening control has been carried-out in terms of PM step-skew.