• Title/Summary/Keyword: PM Brushless Motor

Search Result 57, Processing Time 0.031 seconds

Load-adaptive 180-Degree Sinusoidal Permanent-Magnet Brushless Motor Control Employing Automatic Angle Compensation

  • Kim, Minki;Oh, Jimin;Suk, Jung-Hee;Heo, Sewan;Yang, Yil Suk
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.5
    • /
    • pp.310-316
    • /
    • 2013
  • This paper reports a sinusoidal $180^{\circ}$ drive for a permanent magnet (PM) brushless motor employing automatic angle compensator to suppress the driving loss during the wide-range load operation. The proposed drive of the sinusoidal $180^{\circ}$ PM Brushless motor reduced the amplitude of the 3-phase current by compensating for the lead-angle of the fundamental waves of the 3-phase PWM signal. The conventional lead-angle method was implemented using the fixed angle or memorized table, whereas the proposed method was automatically compensated by calculating the angle of the current and voltage signal. The algorithm of the proposed method was verified in a 30 W PM brushless motor system using a PSIM simulator. The efficiency of the conventional method was decreased 90 % to 60 %, whereas that of proposed method maintained approximately 85 % when the load shift was 0 to $0.02N{\cdot}m$. Using an FPGA prototype, the proposed method was evaluated experimentally in a 30 W PM brushless motor system. The proposed method maintained the minimum phase RMS current and 79 % of the motor efficiency under 0 to $0.09N{\cdot}m$ load conditions. The proposed PM brushless motor driving method is suitable for a variety of applications with a wide range of load conditions.

  • PDF

Sensorless Sine-Wave Controller IC for PM Brushless Motor Employing Automatic Lead-Angle Compensation

  • Kim, Minki;Heo, Sewan;Oh, Jimin;Suk, Jung-Hee;Yang, Yil Suk;Park, Ki-Tae;Kim, Jinsung
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1165-1175
    • /
    • 2015
  • This paper presents an advanced sensorless permanent magnet (PM) brushless motor controller integrated circuit (IC) employing an automatic lead-angle compensator. The proposed IC is composed of not only a sensorless sine-wave motor controller but also an isolated gate-driver and current self-sensing circuit. The fabricated IC operates in sensorless mode using a position estimator based on a sliding mode observer and an open-loop start-up. For high efficiency PM brushless motor driving, an automatic lead-angle control algorithm is employed, which improves the efficiency of a PM brushless motor system by tracking the minimum copper loss under various load and speed conditions. The fabricated IC is evaluated experimentally using a commercial 200 W PM brushless motor and power switches. The proposed IC is successfully operated without any additional sensors, and the proposed algorithm maintains the minimum current and maximum system efficiency under $0N{\cdot}m$ to $0.8N{\cdot}m$ load conditions. The proposed IC is a feasible sensorless speed controller for various applications with a wide range of load and speed conditions.

PLL Control Method for Precise Speed Control of Slotless PM Brushless DC Motor Using 2 Hall-ICs (2 Hall-ICs를 이용한 Slotless PM Brushless DC Motor의 정밀속도제어를 위한 PLL 제어방식)

  • Yoon Y.H;Lee S.J;Kim Y.R;Won C.Y;Choe Y.Y
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.109-116
    • /
    • 2005
  • The high performance drives of the slotless Permanent Magnet Brushless DC(PM BLDC) motor can be achieved by the current control, where the currents flow according to the rotor position and the current phase is suitably controlled according to the operational condition. Rotor position information can be provided by Hall-IC or sensorless algorithm. So, the Hall-ICs are set up in this motor to detect the main flux from the rotor. Instead of using three Hall-ICs and encoder, this paper uses only two Hall-ICs for the permanent magnet rotor position and the speed feedback signals, and uses a micro-controller of 16-bit type (80C196KC). Also because of low resolution obtained by using Hall-IC even low-cost and simple structure, to improve the wide range of speed response characteristic more exactly, we propose the rotor position signal synthesizer using PLL circuit based on two Hall-ICs.

Design Optimization and Development of Linear Brushless Permanent Magnet Motor

  • Chung, Myung-Jin;Gweon, Dae-Gab
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.351-357
    • /
    • 2003
  • A method of design optimization for minimization of force ripple and maximization of thrust force in a linear brushless permanent magnet motor without finite element analysis is represented. The design optimization method calculated the driving force in the function of electric and geometric parameters of a linear brushless PM motor using the sequential quadratic programming method. Using electric and geometric parameters obtained by this method, the normalized force ripple is reduced 7.7% (9.7% to 2.0%) and the thrust force is increased 12.88N (111.55N to 124.43N) compared to those not using design optimization.

Self-Shielding Magnetized vs. Shaped Parallel-Magnetized PM Brushless AC Motors

  • Pang Y.;Zhu Z. Q.;Howe D.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.13-19
    • /
    • 2005
  • The performance of two designs of permanent magnet brushless motor, by having self-shielding magnetized magnets or sinusoidally shaped parallel-magnetized magnets with essentially sinusoidal airgap flux distributions, are compared. It is shown that the parallel-magnetized motor with shaped sintered NdFeB magnets can result in a higher airgap flux density and torque density than that of a self-shielding magnetized motor equipped with an anisotropic injection moulded NdFeB ring magnet.

PLL Control Method for Precise Speed Control of Slotless PM Brushless DC Motor Using 2 Hall-ICs (2 Hall-ICs를 이용한 Slotless PM Brushless DC Motor의 정밀속도제어를 위한 PLL 제어방식)

  • Woo M. S.;Yoon Y. H.;LEE T. W.;Won C. Y.;Choe Y. Y.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.665-669
    • /
    • 2004
  • Generally, Slotless PM BLDC drive system is necessary that the three Hall-ICs evenly be distributed around the stator circumference and encoder be installed in case of the 3 phase motor. So, the Hall-ICs are set up in this motor to detect the main flux from the rotor, and the output signal from Hall-ICs is used to drive a power transistor to control the winding current. However, instead of using three Hall-ICs and encoder, we used only two Hall-ICs for the permanent magnet rotor position and for the speed feedback signals, and also for a microcontroller of 16-bit type (80C196KC) with the 3 phase Slotless PM BLDC whose six stator and two rotor designed. Two Hall-IC Hc and $H_B$ are placed on the endplate at 120 degree intervals, and with these elements, we can estimate information of the others phase in sequence through a rotating rotor.

  • PDF

A Low Cost Speed Control System of PM Brushless DC Motor Using 2 Hall-ICs (2 Hall-ICs를 이용한 저가형 PM Brushless DC Motor속도 제어)

  • Kim D. K.;Yon Y. H.;Woo M. S.;Won C. Y.;Choe Y. Y.
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.132-136
    • /
    • 2003
  • Generally, PM BLDC drive system is necessary that the three Hall-ICs evenly be distributed around the stator circumference and encoder be installed in case of the 3 phase motor. So, the Hall-ICs are set up in this motor to detect the main flux from the rotor, and the output signal from Hall-ICs is used to drive a power transistor to control the winding current. However, instead of using three Hall-ICs and encoder, we used only two Hall-ICs for the permanent magnet rotor position and for the speed feedback signals, and also for a micro controller of 16-bit type (80C196KC) with the 3 phase PM BLDC whose six stator and two rotor designed. Two Hall-IC Hc and $H_B$ are placed on the endplate at 120 degree intervals, and with these elements, we estimated information of the others phase in sequence through a rotating rotor.

  • PDF

Electrical Characteristics and Electromagnetic Excitation Force Comparison of PM Motor according to the Driving method (영구자석형 전동기의 구동방법에 따른 전기적 특성 및 전자기적 가진원 분석)

  • Lee, Su-Jin;Kim, Do-Jin;Lee, Byeong-Hwa;Hong, Jung-Pyo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.144-151
    • /
    • 2013
  • This paper presents a result of the mechanical noise and vibration analysis as well as the electrical characteristics analysis of the permanent magnet(PM) motor according to the driving method that is Brushless DC(BLDC) drive and Brushless AC(BLAC) drive. To do that, the characteristics of the PM motor, which have the same output power but different driving method, are investigated. At that time, the characteristics such as torque, torque ripple and flux density, and so on, are obtained by finite element analysis(FEA). Besides, noise and vibration are obtained by spectrum analysis. The magnetic noise is defined as noise generated from vibrations due to electromagnetic excitation force. In this paper, the electromagnetic excitation force is analyzed and design process of noise reduction is proposed. Finally, The validity of the analysis results is verified by test.

Characteristics Comparison of PM Motor according to the Driving method (영구자석형 전동기의 구동방법에 따른 전자기적 특성 및 진동 소음 비교)

  • Hong, Jung-Pyo;Lee, Su-Jin;Kim, Do-Jin;Lee, Byeong-Hwa;Jang, Woo-Kyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.522-527
    • /
    • 2012
  • This paper presents a result of the mechanical noise and vibration analysis as well as the electrical characteristics analysis of the permanent magnet (PM) motor according to the driving method that is Brushless DC (BLDC) drive and Brushless AC (BLAC) drive. To do that, the characteristics of the PM motor, which have the same output power but different driving method, are investigated. At that time, the characteristics such as torque, torque ripple and flux density, and so on, are obtained by finite element analysis (FEA). Besides, noise and vibration are obtained by spectrum analysis. The magnetic noise is defined as noise generated from vibrations due to electromagnetic excitation force. In this paper, the electromagnetic excitation force is analyzed and design process of noise reduction is proposed. Finally, The validity of the analysis results is verified by test.

  • PDF