• Title/Summary/Keyword: PM10

Search Result 1,286, Processing Time 0.027 seconds

Association between exposure to particulate matter and school absences in Korean asthmatic adolescents

  • Seongmin Jo;Kiook Baek;Joon Sakong;Chulyong Park
    • Annals of Occupational and Environmental Medicine
    • /
    • v.34
    • /
    • pp.21.1-21.13
    • /
    • 2022
  • Background: Because particulate matter (PM) and asthma are closely related, the prevalence of school absence among adolescents with asthma can be affected by the concentration of PM. We aimed to investigate the relationship between school absences due to asthma and the total number of days that the PM concentration exceeded the standard. Methods: We used the data from the 16th Korea Youth Risk Behavior Survey and the PM levels of 17 metropolitan cities and provinces gathered from the AirKorea. Information on the characteristics of asthmatic adolescents and the prevalence of school absence was obtained using a questionnaire, while the PM levels based on the total number of days with poor and very poor PM grades were collected from the AirKorea website. Both χ2 test and logistic regression analysis were performed using the weights presented in the original dataset. Results: In the case of particulate matter of 10 microns in diameter or smaller (PM10), the odds ratio (OR) after adjusting for confounders (sex, school year, body mass index, smoking history, diagnosis of allergic rhinitis, diagnosis of atopic dermatitis and city size) was 1.07 (95% confidence interval [CI]: 1.01-1.13) for absents due to asthma when the total days of poor and very poor grades of PM10 (81 ㎍/m3 or higher) increased by 1 day. In the analysis of particulate matter of 2.5 microns in diameter or smaller (PM2.5), the OR after adjusting for confounders was 1.01 (95% CI: 1.00-1.03) for absents due to asthma when the total number of days with poor and very poor PM2.5 grades (36 ㎍/m3 or higher) increased by 1 day. Conclusions: A significant association was observed between the total number of days of poor and very poor PM10 and PM2.5 grades and school absence due to asthma; PM can cause asthma exacerbation and affect the academic life.

Measurement of Black Carbon Concentration and Comparison with PM10 and PM2.5 Concentrations monitored at the Chungcheong Province in Korea. (충청지역 블랙카본 농도 측정 및 PM10, PM2.5 농도와의 비교 분석 연구)

  • Cha, Youngbum;Lee, Shihyoung;Lee, Jeonghoon
    • Particle and aerosol research
    • /
    • v.13 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • In order to characterize atmospheric aerosols in Chungcheong area, black carbon concentration, which is known to be closely related to global warming, was measured and compared with $PM_{10}$, $PM_{2.5}$ concentrations and various meteorological parameters such as wind velocity and wind direction. Multi Angle Absorption Photometer (MAAP), a filter-based equipment, was used for the black carbon measurement, and the $PM_{10}$, $PM_{2.5}$ concentrations, wind velocity and wind direction were provided by the local monitoring stations. Black carbon concentration was monitored to be high in spring and winter but low in fall. $PM_{10}$ concentration was observed to be high when westerly wind was strong.

An Asian Dust Compensation Scheme of Light-Scattering Fine Particulate Matter Monitors by Multiple Linear Regression (다중 선형 회귀에 의한 광산란 초미세먼지 측정기의 황사 보정 기법)

  • Baek, Sung Hoon
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.8
    • /
    • pp.92-99
    • /
    • 2021
  • Light-scattering fine particulate matter monitors can measure particulate matter (PM) concentrations in every second and can be designed in a portable size. They can measure the concentrations of various PM sizes (PM1.0, PM2.5, PM4.0 and PM10) with a single sensor. They measure the number and size of particulate matters and convert them to weight per volume (concentration). These devices show a large error for asian dust. This paper proposes a scheme that compensates the PM2.5 concenstration error for asian dust by multiple linear regression machine learning in light-scattering PM monitors. This scheme can be effective with only two or three types of PM sizes. The experimental results compare a beta-ray PM monitor of national institute of environmental research and a light-scattering PM monitor during a month. The correlation coefficient (R2) of theses two devices was 0.927 without asian dust, but it was 0.763 due to asian dust during the entire experimental period and improved to 0.944 by the proposed machine learning.

A Study on the Factors Affecting the Air Environment in Chungnam Province - Focusing on Cheonan, Dangjin, and Seosan (충남 대기환경 영향요인에 관한 연구 - 천안, 당진, 서산 등을 중심으로)

  • Hwang, Kyu-Won;Kim, Jinyoung;Kwon, Young-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.118-127
    • /
    • 2021
  • Recently, the public's interest in the air environment has increased, and public health is threatened by fine particulate matter. Furthermore, the government continues efforts to improve air quality by expanding the monitoring of air pollutants and reinforcing environmental standards. Since air quality differs depending on the region in the Korean Peninsula, it is currently necessary to identify the cause and search for influencing factors. In this study, the atmospheric environment and regional differences in cities located in the Chungnam Province were observed. As a research method, regression analysis was performed for weather conditions, such as temperature, wind speed, precipitation, and season and targeted at air pollutants, such as SO2, NO2, CO, O3, PM10, and PM2.5, as well as heavy metals contained in particulate matter, such as Pb, Cd, Cr, Cu, Ni, As, Mn, Fe, Al, Ca, and Mg. In the case of PM10, the concentrations of Mn(0.4884) in Cheonan, CO(0.3329) in Dangjin, and Mg(0.5691) in Seosan were highest. In the case of PM2.5, Cheonan NO2(0.4759), Dangjin CO(0.4128), and Seosan NO2(0.3715) were significantly affected. In summary, the influencing factors vary according to the region in Chungnam province in terms of air quality, and there is a difference in the degree of contribution. Therefore, it is considered that the Korean government's management of air quality is required for each region.

Comparison of the effect of peat moss and zeolite on ammonia volatilization as a source of fine particulate matter (PM 2.5) from upland soil

  • Park, Seong Min;Hong, Chang Oh
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.907-914
    • /
    • 2019
  • Ammonia (NH3) that reacts with nitric or sulfuric acid in the air is the major culprit contributing to the formation of fine particulate matter (PM2.5). NH3 volatilization mainly originates from nitrogen fertilizer and livestock manure applied to arable soil. Cation exchange capacity (CEC) of peat moss (PM) and zeolite (ZL) is high enough to adsorb ammonium (NH4+) in soil. Therefore, they might inhibit volatilization of NH3. The objective of this study was to compare the effect of PM and ZL on NH3 volatilization from upland soil. For this, a laboratory experiment was carried out, and NH3 volatilization from the soil was monitored for 12 days. PM and ZL were added at the rate of 0, 1, 2, and 4% (wt wt-1) with 354 N g m-2 of urea. Cumulative NH3-N volatilization decreased with increasing addition rate of both materials. Mean value of cumulative NH3-N volatilization across application rate with PM was lower than that with ZL. CEC increased with increasing addition rate of both materials. While the soil pH increased with ZL, it decreased with PM. Increase in CEC resulted in NH4+ adsorption on the negative charge of the external surface of both materials. In addition, decrease in soil pH hinders the conversion of NH4+ to NH3. Based on the above results, the addition of PM or ZL could be an optimum management to reduce NH3 volatilization from the soil. However, PM was more effective in decreasing NH3 volatilization than ZL due to the combined effect of CEC and pH.

High Influential Factor of Cadmium and Lead Exposure in Outdoor Workers (옥외 근로자들의 카드뮴과 납 노출 영향요인)

  • Moon, Chan-Seok
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.2
    • /
    • pp.163-173
    • /
    • 2020
  • Objectives: The study was evaluated exposure variation and daily absorption level of cadmium, lead concentration of ambient air of monthly data from 1999 to 2017 for main exposure factor in outdoor workers. Methods: Based on the monthly data from 'The annual report of air quality in Korea from 1999 to 2018' in 'Air Korea' website in the Korean Ministry of Environment. The monthly data of PM2.5, PM10, cadmium, lead concentration of ambient air were recalculated to average, minimum, and maximum. And these data were combined to Asian-dust exposure data from 'The annual report of Asian-dust·smog in 2017' of National Institute of Meteorological Sciences in Korea. Results: Geometric mean(minimum-maximum) concentration in ambient air of monthly data were 0.0017 (ND-0.2015) mg/㎥ in cadmium and 0.0467(ND-0.8554) mg/㎥ in Pb from 1999 to 2017. Both of Cd and Pb concentration in ambient air showed the highest concentration in January and the lowest in August among annual variation from 1999 to 2017. PM10 and PM2.5 level showed the highest in March(PM10) and February (PM2.5) the lowest in August both of PM10 and PM2.5. Discussion: Based on exposure data and prior reports, daily Cd absorption was estimated to 0.013(ND-1.511) mg/day from respiration and 1.89 mg/day from daily food(25.2 mg/day of daily Cd intake). In case of Pb, daily absorption was estimated to 0.350(ND-6.416) mg/day from respiration and 1.38-1.71 mg/day from daily food intake. Conclusion: Cd and Pb with Asian-dust have high influential factor to increase the Cd and Pb exposure at Winter and Spring season in outdoor workers.

Analysis on the Effects of Particular Matter Distribution on the Number of Outpatient Visits for Allergic Rhinitis (지역별 미세먼지 농도의 알레르기비염 외래이용에 대한 영향 분석)

  • Park, Ju Hyun;Park, Young Yong;Lee, Eunjoo;Lee, Kwang-Soo
    • Health Policy and Management
    • /
    • v.30 no.1
    • /
    • pp.50-61
    • /
    • 2020
  • Background: This study aims to analyze the effects of air pollutants, such as particular matter, to the number of outpatient visits for allergic rhinitis in eup, myeon, and dong administrative boundaries. Methods: Dependent variable was the number of outpatient visits for allergic rhinitis per 10,000 people by region. Independent variables were air pollutants such as PM10, PM2.5, SO2, O3, CO2, NO2, and temperature that estimated by using Kriging analysis in all eup, myeon, and dong boundaries. Panel analysis was applied for the analysis to prove the relation between outpatient visits and the concentration of air pollutants. Results: Analysis results showed that particular matter concentration varied by regions and season. Panel analysis showed that outpatient visits for allergic rhinitis had positive relationships with PM10, PM2.5, SO2, O3, and CO2 in all panel models. Conclusion: Regional variation of particular matter concentration should be considered in establishing regional policies for allergic rhinitis.

Characteristics of Metallic and Ionic Concentrations in PM10 and PM2.5 in Busan (부산지역 PM10과 PM2.5 중의 금속 농도와 이온농도 특성)

  • Jeon, Byung-Il;Hwang, Yong-Sik
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.819-827
    • /
    • 2014
  • This study analyzes the chemical composition of metallic elements and water-soluble ions in $PM_{10}$ and $PM_{2.5}$. $PM_{10}$ and $PM_{2.5}$ concentrations in Busan during 2010-2012 were $97.2{\pm}67.5$ and $67.5{\pm}32.8{\mu}g/m^3$, respectively, and the mean $PM_{2.5}/PM_{10}$ concentration ratio was 0.73. The contribution rate of water-soluble ions to $PM_{10}$ ranged from 29.0% to 58.6%(a mean of 38.6%) and that to $PM_{2.5}$ ranged from 33.9% to 58.4%(a mean of 43.1%). The contribution rate of sea salt to $PM_{10}$ was 13.9% for 2011 and 9.7% for 2012, while that to $PM_{2.5}$ was 17.4% for 2011 and 10.1% for 2012. $PM_{10}$ concentration during Asian dust events was $334.3{\mu}g/m^3$ and $113.3{\mu}g/m^3$ during non-Asian dust events, and the $PM_{10}$ concentration ratio of Asian Dust/Non Asian dust was 2.95. On the other hand, the $PM_{2.5}$ concentration in Asian dust was $157.4{\mu}g/m^3$ and $83.2{\mu}g/m^3$ in Non Asian dust, and the $PM_{2.5}$ concentration ratio of Asian Dust/Non Asian dust was 1.89, which was lower than that of $PM_{10}$.

Characteristics of Summertime High PM2.5 Episodes and Meteorological Relevance in Busan (부산지역 여름철 고농도 PM2.5 농도 사례와 기상학적 관련성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.29 no.7
    • /
    • pp.761-772
    • /
    • 2020
  • This research investigated the meteorologically relevant characteristics of high PM2.5 episodes in Busan. The number of days when daily mean PM10 concentration exceeded 100 ㎍/㎥ and the PM2.5 concentration exceeded 50 ㎍/㎥ over the last four years in Busan were 24 and 58, respectively. Haze occurrence frequency was 37.6% in winter, 27.4% in spring, 18.6% in fall, and 16.4% in summer. Asian dust occurrence frequency was 81.8% in spring, 9.1% in fall and winter, and 0% in summer. During summer in Busan, high PM2.5 episode occurred under the following meteorological conditions. 1) Daytime sea breeze. 2) Mist and haze present throuout the day. 3) Anti-cyclone located around the Korean peninsula. 4) Stable layer formed in the lower atmosphere. 5) Air parcel reached Busan by local transport rather than by long-range transport. These results indicate that understanding the meteorological relevance of high PM2.5 episodes could provide insight for establishing a strategy to control urban air quality.

The Association Between PM2.5 Exposure and Diabetes Mellitus Among Thai Army Personnel

  • Apisorn Laorattapong;Sarun Poobunjirdkul;Thanapoom Rattananupong;Wiroj Jiamjarasrangsi
    • Journal of Preventive Medicine and Public Health
    • /
    • v.56 no.5
    • /
    • pp.449-457
    • /
    • 2023
  • Objectives: This study investigated the association between baseline exposures to particulate matter with a diameter <2.5 microns (PM2.5) and subsequent temporal changes in PM2.5 exposure with the incidence of type 2 diabetes among Royal Thai Army personnel. Methods: A retrospective cohort study was conducted using nationwide health check-up data from 21 325 Thai Army personnel between 2018 and 2021. Multilevel mixed-effects parametric survival statistics were utilized to analyze the relationship between baseline (i.e., PM2.5-baseline) and subsequent changes (i.e., PM2.5-change) in PM2.5 exposure and the occurrence of type 2 diabetes. Hazard ratios (HRs) and 95% confidence intervals (CIs) were employed to assess this association while considering covariates. Results: There was a significant association between both PM2.5 baseline and PM2.5-change and the incidence of type 2 diabetes in a dose-response manner. Compared to quartile 1, the HRs for quartiles 2 to 4 of PM2.5-baseline were 1.11 (95% CI, 0.74 to 1.65), 1.51 (95% CI, 1.00 to 2.28), and 1.77 (95% CI, 1.07 to 2.93), respectively. Similarly, the HRs for quartiles 2 to 4 of PM2.5-change were 1.41 (95% CI, 1.14 to 1.75), 1.43 (95% CI, 1.13 to 1.81) and 2.40 (95% CI, 1.84 to 3.14), respectively. Conclusions: Our findings contribute to existing evidence regarding the association between short-term and long-term exposure to PM2.5 and the incidence of diabetes among personnel in the Royal Thai Army.