• Title/Summary/Keyword: PM, Particulate Matter

Search Result 829, Processing Time 0.028 seconds

Influence of Blending Method on the Generation of Wear Particulate Matters and Physical Properties in TBR Tire Tread Compounds

  • Sanghoon Song;Junhwan Jeong;Jin Uk Ha;Daedong Park;Gyeongchan Ryu;Donghyuk Kim;Kiwon Hwang;Sungwook Chung;Wonho Kim
    • Elastomers and Composites
    • /
    • v.58 no.4
    • /
    • pp.161-172
    • /
    • 2023
  • Because particulate matter has emerged as a major contributor to air pollution, the tire industry has conducted studies to reduce particulate matters from tires by improving tire performance. In this study, we compared the conventional blending method, in which rubber, filler, and additives are mixed simultaneously, to the Y-blending method, in which masterbatches are blended. We manufactured carbon black (CB)-filled natural rubber (NR)/butadiene rubber (BR) blend and silica-filled epoxidized NR/BR blend compounds to compare the effects of the two blending methods on the physical properties of the compounds and the amount of particulate matter generated. The Y-blending method provided uniform filler distribution in the heterogeneous rubber matrix, improved processability, and exhibited low rolling resistance. This method also improved physical properties owing to the excellent filler-rubber interaction. The results obtained from measuring the generation of particulate matter indicated that, the Y-blending method reduced PM2.5 particulate matter generation from the CB-filled and silica-filled compounds by 38% and 60%, and that of PM10 by 29% and 67%, respectively. This confirmed the excellence of the Y-blending method regarding the physical properties of truck bus radial tire tread compounds and reduced particulate matter generated.

Evaluation of Endocrine Disrupting Chemicals-Complex Mixture in Diesel Exhaust Respirable Particulate Matter

  • Ryu, Byung-Tak;Jang, Hyoung-Seok;Kim, Yun-Hee;Kim, Soung-Ho;Lee, Do-Han;Han, Kyu-Tae;Oh, Seung-Min;Chung, Kyu-Hyuck
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.195-195
    • /
    • 2003
  • It is well known that diesel exhaust particulate matter contains mutagenic PAHs, such as benzo[${\alpha}$]pyrene, benz[${\alpha}$]anthracene, chrysene, etc. Therefore it is suspected that these chemicals act on estrogen receptor and reveal endocrine-disrupting effects. Recent attention has focused on causative chemicals of endocrine-disrupting effects. We examined the estrogenic activity of respirable diesel exhaust particulate matter derived from diesel powered vehicle. PM2.5 diesel exhaust of vehicle was collected using a high volume sampler equipped with a cascade impactor. Diesel exhaust samples were fractionated according to EPA methods. The presence of estrogenic and antiestrogenic chemicals in PM 2.5 diesel exhaust was determined using E-screen assay. To quantitatively assess the estrogenic and antiestrogenic activities in diesel exhaust particulate matter, estradiol equivalent concentration (bio-EEQ) was calculated by comparing the concentration response curve of the sample with those of the estrogen calibration curve. Weak estrogenic activities and strong antiestrogenic activities were detected in the crude extract and moderately polar fractions. Higher antiestrogenic potency was observed with higher EROD activities in aliphatic and aromatic compounds fraction. In conclusion, estrogenic/antiestrogenic-like activities were present in diesel exhaust particulate matter. However, the health consequences of this observation was unknown, the presence of these activities may contribute to and exacerbate adverse health effect evoked by diesel exhaust particulate matter.

  • PDF

Removal Potential of Particulate Matter of 12 Woody Plant Species for Landscape Planting

  • Kwon, Kei-Jung;Urrintuya, Odsuren;Kim, Sang-Yong;Yang, Jong-Cheol;Sung, Jung-Won;Park, Bong-Ju
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.6
    • /
    • pp.647-654
    • /
    • 2020
  • Background and objective: Particulate matter (PM) is one of the serious environmental problems and threatens human health. Plants can clean the air by removing PM from the atmosphere. This study was carried out to investigate the PM removal efficiency of 12 species of woody plants. Methods: Actinidia arguta, Dendropanax morbiferus, Fraxinus rhynchophylla, Parthenocissus tricuspidata, Pittosporum tobira, Rhaphiolepis indica, Rhapis, Salix integra, Salix koreensis, Schisandra chinensis, Viburnum odoratissimum var. awabuki, and Vitis coignetiae were used as plant material. Six 15 cm (D) pots were placed in an acrylic chamber of 800 (D) × 800 (W) × 1000 (H) mm. The LED panel was used as a light source. The reduction of PM10, PM2.5, and PM1 for 300 minutes after the injection of PM was automatically measured. Results: The leaf area and the amount of PM in the chamber showed a negative correlation. 12 species of plants were compared by dividing the plants into 3 groups according to their characteristics: vines, trees, and shrubs and small trees. In the vine plant group, the averages of PM10, PM2.5, and PM1 were 7.917%, 8.796%, and 30.275%, respectively. In the shrubs and small trees group, the average of PM10, PM2.5, and PM1 were 10.142%, 11.133%, and 36.448%, respectively. In the trees group, the average of PM10, PM2.5, and PM1 were 11.475%, 12.892%, and 40.421%, respectively. When the initial concentration was 100%, PM10, PM2.5, and PM1 of Viburnum odoratissimum var. awabuki with the largest leaf area were 5.6%, 6.3%, and 21.0% after 5 hours, respectively, the best results among 12 species of plants. Conclusion: The vine plant group was more effective in removing PM than the other two groups. In the tree groups, the fact that the leaf development was relatively inactive at a plant height of 30 cm was considered to have an effect on the removal of particulate matter.

Analysis of the Fine Particulate Matter Particle Size Fraction Emitted from Facilities Using Solid Refuse Fuel (고형연료제품 사용시설에서 배출되는 미세먼지 입경분율 분석)

  • You, Han-Jo;Jung, Yeon-Hoon;Kim, Jin-guil;Shin, Hyung-Soon;Lim, Yoon-Jung;Lee, Sang-Soo;Son, Hae-Jun;Lim, Sam-Hwa;Kim, Jong-Su
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.6
    • /
    • pp.719-725
    • /
    • 2020
  • Objectives: With the growth of national interest in fine particulate matter, many complaints about pollutants emitted from air pollution emitting facilities have arisen in recent years. In particular, it is thought that a large volume of particulate pollutants are discharged from workplaces that use Solid Refuse Fuel (SRF). Therefore, particulate contaminants generated from SRF were measured and analyzed in this study in terms of respective particle sizes. Methods: In this study, particulate matter in exhaust gas was measured by applying US EPA method 201a using a cyclone. This method measures Filterable Particulate Matter (FPM), and does not consider the Condensable Particulate Matter (CPM) that forms particles in the atmosphere after being discharged as a gas in the exhaust gas. Results: The mass concentration of Total Suspended Particles (TSP) in the four SRF-using facilities was 1.16 to 11.21 mg/Sm3, indicating a very large concentration deviation of about 10 times. When the fuel input method was the continuous injection type, particulate matter larger than 10 ㎛ diameter showed the highest particle size fraction, followed by particulate matter smaller than 10 ㎛ and larger than 2.5 ㎛, and particulate matter of 2.5 ㎛ or less. Contrary to the continuous injection type, the batch injection type had the smallest particle size fraction of particulate matter larger than 10 ㎛. The overall particulate matter decreased as the operating load factor decreased from 100% to 60% at the batch input type D plant. In addition, as incomplete combustion significantly decreased, the particle size fraction also changed significantly. Both TSP and heavy metals (six items) satisfied the emissions standards. The measured value of the emission factor was 38-99% smaller than the existing emissions factor. Conclusions: In the batch injection facility, the particulate matter decreased as the operating load factor decreased, as did the particle size fraction of the particulate matter. These results will help the selection of effective methods such as reducing the operating load factor instead of adjusting the operating time during emergency reduction measures.

Regional Analysis of Particulate Matter Concentration Risk in South Korea (국내 지역별 미세먼지 농도 리스크 분석)

  • Oh, Jang Wook;Lim, Tea Jin
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.157-167
    • /
    • 2017
  • Millions of People die every year from diseases caused by exposure to outdoor air pollution. Especially, one of the most severe types of air pollution is fine particulate matter (PM10, PM2.5). South Korea also has been suffered from severe PM. This paper analyzes regional risks induced by PM10 and PM2.5 that have affected domestic area of Korea during 2014~2016.3Q. We investigated daily maxima of PM10 and PM2.5 data observed on 284 stations in South Korea, and found extremely high outlier. We employed extreme value distributions to fit the PM10 and PM2.5 data, but a single distribution did not fit the data well. For theses reasons, we implemented extreme mixture models such as the generalized Pareto distribution(GPD) with the normal, the gamma, the Weibull and the log-normal, respectively. Next, we divided the whole area into 16 regions and analyzed characteristics of PM risks by developing the FN-curves. Finally, we estimated 1-month, 1-quater, half year, 1-year and 3-years period return levels, respectively. The severity rankings of PM10 and PM2.5 concentration turned out to be different from region to region. The capital area revealed the worst PM risk in all seasons. The reason for high PM risk even in the yellow dust free season (Jun. ~ Sep.) can be inferred from the concentration of factories in this area. Gwangju showed the highest return level of PM2.5, even if the return level of PM10 was relatively low. This phenomenon implies that we should investigate chemical mechanisms for making PM2.5 in the vicinity of Gwangju area. On the other hand, Gyeongbuk and Ulsan exposed relatively high PM10 risk and low PM2.5 risk. This indicates that the management policy of PM risk in the west side should be different from that in the east side. The results of this research may provide insights for managing regional risks induced by PM10 and PM2.5 in South Korea.

Convergence Study of University Students' Knowledge, Perception, Attitude, and Preventive Behavior toward Particulate Matter (미세먼지에 대한 대학생의 지식, 인식, 태도와 예방행위에 대한 융합연구)

  • Kim, Og Son
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.49-56
    • /
    • 2020
  • This study was conducted to identify the level of knowledge, perception, attitude, and preventive behavior toward particulate matter (PM) among university students, as well as to determine factors influencing their PM preventive behaviors. Questionnaires were distributed from December 9 to December 20, 2019, and the data from 180 valid responses were analyzed using SPSS Window 18.0. The scores for knowledge, perception, attitude, and preventive behavior against PM were 62.00 points, 72.33 points, 77.30 points, and 69.02 points, respectively, when converted to a 100-point scale. Regarding the factors influencing preventive behavior, only perception was significant among the assessed factors (p<.001). Therefore, it is suggested that efforts be made to promote preventive behavior related to PM. Furthermore, when developing a program to promote preventive behavior related to particulate matter exposure, it is necessary to consider strategies to improve perception of PM preventive behavior.

Distinct Oxidative Damage of Biomolecules by Arrays of Metals Mobilized from Different Types of Airborne Particulate Matters: SRM1648, Fine (PM2.5), and Coarse (PM10) Fractions

  • Park, Yong Jin;Lim, Leejin;Song, Heesang
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.139-143
    • /
    • 2013
  • This study was performed to examine the in vitro toxicities which are incurred due to the mobilization metals from standard reference material (SRM) 1648, fine ($PM_{2.5}$), and coarse ($PM_{10}$) particulate matter collected in Seoul metropolitan area. DNA single strand breaks of approximately 74% and 62% for $PM_{2.5}$ and for $PM_{10}$, respectively, were observed in the presence of chelator (EDTA or citrate)/reductant (ascorbate), as compared to the control by 2% without chelator or reductant. $PM_{2.5}$ induced about 40% more carbonyl formation with proteins in the presence of EDTA/ascorbate than $PM_{10}$. Therefore, more damage to biomolecules was incurred upon exposure to $PM_{2.5}$ than to $PM_{10}$. The treatment of a specific chelator, desferrioxamine, to the reaction mixture containing chelator plus reductant decreased the extent of damage to DNA to the level of the control, but did not substantially decrease the extent of damage to proteins. This suggests that different arrays of metals were involved in the oxidation of DNA and proteins.

Factors Influencing Health Behavior Related to Particulate Matter in Older Adults (노인의 미세먼지 관련 건강행위와 영향요인)

  • Park, Min Kyung;Kim, Gwang Suk
    • Journal of Korean Academy of Nursing
    • /
    • v.50 no.3
    • /
    • pp.431-443
    • /
    • 2020
  • Purpose: This study aimed to investigate health behavior related to particulate matter (PM) in older adults and examine the factors affecting it. Methods: A cross-sectional survey design was used. Data were collected from 150 voluntary older adult participants from Songpa-gu in Seoul. The survey questions measured service perception and experience related to PM, risk perception related to PM, attitude toward risk of PM, and health behavior related to PM. Results: The average score for health behavior related to PM was 79.37, ranging from 51 to 115. There was a significant positive correlation between health behavior related to PM and risk perception related to PM (r=.58, p<.001) as well as between health behavior related to PM and attitude toward risk of PM (r=.70, p<.001). Multiple linear regression revealed that health behavior related to PM was predicted by levels of the existence of disease related to PM (β=.14, p=.019), service experience related to PM (β=.20, p=.021), risk perception related to PM (β=.20, p=.019), and attitude toward risk of PM (β=.44, p<.001). The model including these variables accounted for 47.0% of health behavior related to PM. Conclusion: Korean older adults have the low level of health behavior related to PM. The findings of this study emphasize that risk perception and attitude toward risk of PM should be evaluated, and the underlying diseases related to PM and their service experience should be considered in developing intervention to improve health behavior related to PM.

Estrouenic/antiestrogenic potencies in crude and fractionated extracts of diesel exhaust particulate matter(PM) on human breast cancer cell

  • Ryu, Byung-Taek;Kim, Yun-Hee;Han, Kyu-Tae;Oh, Seung-Min;Chung, Kyu-Hyuck
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.165.2-166
    • /
    • 2003
  • Diesel exhaust is suspected to cause acute and chronic adverse effects on health. In recent. the effect of estrogenic endocrine disruptor in diesel particulate matter was little studied. Therefore, we examined the estrogenic activity of respirable diesel exhaust particulate matter derived from diesel engine motor. PM2.5 diesel exhaust of vehicle was collected using a high volume samples equipped with a cascade impactor. (omitted)

  • PDF

Performance Evaluation of Window Ventilation System for Reducing Indoor particulate matter (실내 미세먼지 저감을 위한 창호형 환기시스템 성능평가)

  • Yang, Young Kwon;Park, Jin Chul
    • Land and Housing Review
    • /
    • v.10 no.3
    • /
    • pp.1-7
    • /
    • 2019
  • Indoor particulate matter(PM) is a carcinogen and needs to be removed and managed. It is generally reduced and removed through ventilation and filtration. Owing to the recent occurrence of high-concentration fine dust and yellow dust in the atmosphere, however, it is difficult to expect the purification of indoor air through the simple introduction of the outside air. For residential buildings, in particular, they are highly dependent on natural ventilation but the lack of natural ventilation is worsening because concerns over the inflow of external pollutants are increasing. Therefore, this study designed and manufactured a window ventilation system that does not require a duct to improve the maintenance and management problems of general ventilation system, and constructed indoor PM concentration change data through performance evaluation.