• Title/Summary/Keyword: PM(particulate matter)

Search Result 820, Processing Time 0.026 seconds

Effects of Indoor Greening Method on Temperature, Relative Humidity and Particulate Matter Concentration (실내녹화 방법이 온·습도 및 미세먼지 농도에 미치는 영향)

  • Kwon, Kei-Jung;Park, Bong-Ju
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.4
    • /
    • pp.1-10
    • /
    • 2017
  • This study investigated indoor temperature and humidity control and PM1 and PM10 mitigation effects of a single green wall (Case 1), two green walls (Case 2), and two green walls plus a waterfall (Case 3) in comparison with a control without either a green wall or waterfall. Experiments were conducted in the office of Chungbuk National University from August to September, 2015. Experiments were carried out sequentially in the order of control, Case 1, Case 2, and Case 3. Data collected from August 17 to August 20, 2015 (Experiment 1), and from August 31 to September 3, 2015 (Experiment 2), when outdoor temperature was relatively constant, were analyzed. Plant volume ratios by indoor landscaping of the control, Case 1, Case 2 and Case 3 were 0.0, 0.6, 1.2, and 1.4%, respectively. Compared to the control, average temperatures of Case 1, Case 2 and Case 3 were decreased by 0.3~0.7, 0.7~0.9 and $1.0^{\circ}C$, respectively, and relative humidity was increased by 1.8~8.7, 9.2~14.6 and 14.8~21.9%, respectively. Three hundred minutes after exposure to mosquito repellent incense particles, the ratio of the remaining PM1 of the control, Case 1, Case 2 and Case 3 were 25.0, 22.0%, 21.2%, 17.3%, respectively, in Experiment 1 and 42.3, 28.9, 23.1, and 30.9%, respectively, in Experiment 2. As indoor greening increased the effect of indoor temperature, PM1 and PM10 mitigation were greater, and temperature and humidity were lower. The greater the relative humidity was, the faster PM1 and PM10 mitigation tended to be.

Characteristics of Particulate Matter 2.5 by Type of Space of Urban Park - Focusing on the Songsanghyeon Plaza in Busan - (도로변 공원의 공간조성유형에 따른 초미세먼지 분포 특성 - 부산시 송상현광장을 사례로-)

  • Ahn, Rosa;Hong, Sukhwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.6
    • /
    • pp.37-48
    • /
    • 2021
  • Roadside pollution has been identified as the main cause of PM2.5 in urban areas. Green infrastructure has been understood to mitigate air pollution from roadside traffic effectively, but complication depend on environmental variables. This study aimed to investigate the characteristic of PM2.5 by the type of space in an urban park located in Songsanghyeon Plaza, surrounded by a 12-lane road on all sides. Type of space was typically classified as roadside square (A), sunken square (B), a mix of trees and hedges/shrubs (C), trees only (D), and grass square (E) according to the land-use type and layers of trees. PM2.5 was measured for nine days, three days for three different Air Quality Forecasts-Good level (0~15㎍/m3), Moderate level (16~35㎍/m3), and Unhealthy level (36~75㎍/m3). The analysis result was as follows. At good levels, there was statistical significance in the order of D, E < B, C < A. In the case of moderate levels and unhealthy levels, D and E were statistically lower than other land-use types. The characteristic of PM2.5 in the urban park by type of space was affected by atmospheric flow into the road. The relatively high concentration of A and C was located near the roads. Although B was far away from the road, the reason for the high concentration of PM2.5 was that no structures blocked the air pollution. Thanks to the type of space C, filtering the air pollution from the roads, the concentration of PM2.5 in D and E was relatively low.

Mitigation Effect on Airborne Particulate Matter Concentration by Roadside Green Space Type and Impact of Wind Speed (도로변 녹지 유형별 미세먼지 농도 저감 효과와 이에 대한 풍속의 영향 연구)

  • Tae-Young Choi;Da-In Kang;Jaegyu Cha
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.437-449
    • /
    • 2023
  • This study measured PM10 concentrations and wind speeds in buffer green spaces and neighborhood parks located along the road, and compared them with roadside measurementresults to understand the effect of mitigating PM10 concentrations by type of green space and the influence of wind speeds on it. As a result of the analysis, the effect of mitigating PM10 concentration was different depending on the type of roadside green space, and an increase in wind speed had a significant effect on reducing PM10 concentration. In buffer green areas with high planting density, wind speed was low and PM10 stagnated inside, resulting in the highest concentration. On the other hand, green areas in neighborhood parks with relatively low planting density had high wind speeds and the lowest PM10 concentration. The non-green area within the neighborhood park recorded the highest wind speed, which was advantageous for the spread of PM10, but the concentration was higherthan that of the green area. Therefore, in orderto reduce PM10 concentration in roadside green space, it is necessary to create green space with good ventilation, and the combined effect of green space and wind speed seems to be more advantageous in reducing PM10 concentration. Green spaces capture and remove PM inside, contributing to reducing the concentration of PM outside. In order to manage PM in the entire city and on roads, it is necessary to increase planting density and leaf area in roadside green spaces, such as buffer green spaces, so that PM can be removed within the green spaces. However, in green spaces such as neighborhood parks that are actively used by city residents, in orderto minimize damage to users due to PM, it is desirable to create green spaces with a structure that allows PM to spread to the outside rather than stagnate inside.

Composition and pollution characteristics of TSP, PM2.5 atmospheric aerosols at Gosan site, Jeju Island (제주도 고산지역 TSP, PM2.5 대기에어로졸의 조성 및 오염 특성)

  • Lee, Soon-Bong;Kang, Chang-Hee;Jung, Duk-Sang;Ko, Hee-Jung;Kim, Haeng-Bum;Oh, Yong-Soo;Kang, Hae-Lim
    • Analytical Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.371-382
    • /
    • 2010
  • TSP and PM2.5 atmospheric aerosols have been collected at Gosan site of Jeju Island, and their compositions were analyzed to understand the pollution characteristics. The composition ratios of nss (non-sea salt)-$SO_4^{2-}$ and $NH_4^+$ were higher in Gosan site than those in other Korean background and urban sites. However the composition ratio of $NO_3^-$ was conversely lower in Gosan site. From the study of aerosol components according to particle sizes, the anthropogenic nss-$SO_4^{2-}$, $NO_3^-$ and $NH_4^+$ components were mostly existed in the fine particles. But the nss-$Ca^{2+}$, $Na^+$, $Cl^-$ and $Mg^{2+}$ originated from soil and marine sources were distributed relatively in the coarse particles. In the seasonal comparison, the concentrations of nss-$Ca^{2+}$, Al, Fe, Ca and $NO_3^-$ increased in spring season, and nss-$SO_4^{2-}$ showed higher concentration in summer and spring seasons. Based on the factor analysis, the atmospheric aerosols in Gosan site have been found to be influenced largely by anthropogenic sources, and next by marine and soil sources. The backward trajectory analyses showed that the concentrations of nss-$SO_4^{2-}$, $NO_3^-$, Pb and nss-$Ca^{2+}$ increased when the air mass moved from Chinese continent to Jeju area. On the other hand, their concentrations decreased when the air mass moved in from the North Pacific Ocean.

The Distribution of Aerosol Concentration during the Asian Dust Period over Busan Area, Korea in Spring 2009 (2009년 봄철 부산지역 황사 기간 중 에어로솔 농도 분포)

  • Jung, Woon-Seon;Park, Sung-Hwa;Lee, Dong-In;Kang, Deok-Du;Kim, Dong-Chul
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.693-710
    • /
    • 2013
  • This study investigates the distribution of suspended particulates during the Asian dust period in Busan, Korea in the spring of 2009. Weather map and automatic weather system (AWS) data were used to analyze the synoptic weather conditions during the period. Particulate matter 10, laser particle counter data, satellite images and a backward trajectories model were used to analyze the aerosol particles distribution and their origins. In Case 1 (20 February 2009), when the $PM_{10}$ concentration increased, the aerosol volume distribution of small ($0.3-1.0{\mu}m$) particles decreased, while the concentration of large ($1.0-10.0{\mu}m$) particles increased. When the $PM_{10}$ concentration decreased, the aerosol volume distribution was observed to decrease as well. The prevailing winds changed from weak northerly winds to strong southwesterly winds when the concentration of the large particles increased. The correlation coefficient between the $PM_{10}$ concentration and aerosol volume distribution of large particles showed a high positive value of over 0.9. The results from the trajectory model show that the Asian dust originated in the Gobi desert and the Nei Mongol plateau. In Case 2 (25 April 2009), when the $PM_{10}$ concentration increased, the aerosol volume concentration of small ($0.3-0.5{\mu}m$) particles decreased, but the concentration of large ($0.5-10.0{\mu}m$) particles increased. The opposite was observed when the $PM_{10}$ concentration decreased. The prevailing winds changed from northeasterly winds to southwesterly and northeasterly winds. The correlation coefficient between the $PM_{10}$ concentration and aerosol volume distribution of large particles ($1.0-10.0{\mu}m$) showed a high positive value of about 0.9. The results from the trajectory model show that the Asian dust originated in Manchuria and the eastern coast of China.

Analysis of Empirical Multiple Linear Regression Models for the Production of PM2.5 Concentrations (PM2.5농도 산출을 위한 경험적 다중선형 모델 분석)

  • Choo, Gyo-Hwang;Lee, Kyu-Tae;Jeong, Myeong-Jae
    • Journal of the Korean earth science society
    • /
    • v.38 no.4
    • /
    • pp.283-292
    • /
    • 2017
  • In this study, the empirical models were established to estimate the concentrations of surface-level $PM_{2.5}$ over Seoul, Korea from 1 January 2012 to 31 December 2013. We used six different multiple linear regression models with aerosol optical thickness (AOT), ${\AA}ngstr{\ddot{o}}m$ exponents (AE) data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua satellites, meteorological data, and planetary boundary layer depth (PBLD) data. The results showed that $M_6$ was the best empirical model and AOT, AE, relative humidity (RH), wind speed, wind direction, PBLD, and air temperature data were used as input data. Statistical analysis showed that the result between the observed $PM_{2.5}$ and the estimated $PM_{2.5}$ concentrations using $M_6$ model were correlations (R=0.62) and root square mean error ($RMSE=10.70{\mu}gm^{-3}$). In addition, our study show that the relation strongly depends on the seasons due to seasonal observation characteristics of AOT, with a relatively better correlation in spring (R=0.66) and autumntime (R=0.75) than summer and wintertime (R was about 0.38 and 0.56). These results were due to cloud contamination of summertime and the influence of snow/ice surface of wintertime, compared with those of other seasons. Therefore, the empirical multiple linear regression model used in this study showed that the AOT data retrieved from the satellite was important a dominant variable and we will need to use additional weather variables to improve the results of $PM_{2.5}$. Also, the result calculated for $PM_{2.5}$ using empirical multi linear regression model will be useful as a method to enable monitoring of atmospheric environment from satellite and ground meteorological data.

Emission Characteristics of Fine Particles, Vanadium and Nickel from Heavy Oil Combustion (중유 연소 시 발생하는 미세입자 및 니켈과 바나듐의 대기 중 배출특성)

  • Jang, Ha-Na;Kim, Sung-Heon;Lee, Ju-Hyung;Hwang, Kyu-Won;Yoo, Jong-Ik;Sok, Chong-Hui;Seo, Yong-Chil
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.3
    • /
    • pp.353-360
    • /
    • 2006
  • This study identified a particle size distribution (PSD) of fine particulate matter and emission characteristics of V and Ni by the comparison between anthropogenic sources of oil combustion (industrial boiler, oil power plant, etc.) and lab-scale combustion using a drop-tube furnace. In oil combustion source, the mass fraction of fine particles (less than 2.5 micrometers in diameter) was higher than that of coarse particles (larger than 2.5 micrometers in diameter) in $PM_{10}$ (less than 10 micrometers in diameter) as like in lab-scale oil combustion. In addition to this, it was identified that ultra-fine particles (less than 0.1 micrometers in diameter) had a large distribution in fine particles. Toxic metals like V and Ni had large mass fractions in fine particles, and most of all was distributed in ultra-fine particles. Most of ultra-fine particles containing toxic metals have been emitted into ambient by combustion source because it is hard to control by the existing air pollution control device. Hence, we must be careful on these pollutants because it is obvious that these are associated with adverse health and environmental effect.

Intercomparison of Carbonaceous Analytical Results using NIOSH5040, IMPROVE_A, EUSAAR2 Protocols (NIOSH5040, IMPROVE_A, EUSAAR2을 이용한 탄소 분석 결과 비교)

  • Oh, Sea-Ho;Park, Da-Jeong;Cho, Ji-Hye;Han, Young-Ji;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.447-456
    • /
    • 2018
  • Elemental carbon (EC) and organic carbon (OC) thermal/optical methods for the analysis of ambient particulate matter were used to analyze twenty-two $PM_{2.5}$ samples along collected from May 28 to June 20 of 2016 at the Anmyeon measurement site ($36.32^{\circ}N$; $126.19^{\circ}E$). The three laboratory OCEC protocols, which are the National Institute of Occupational Safety and Health (NIOSH5040), the Interagency Monitoring of Protected Visual Environments_A(IMPROVE_A), and European Supersites for Atmospheric Aerosol Research2 (EUSAAR2), were utilized for the aerosol characterization experiment as in intercomparisons between three protocols. There are excellent agreement for total carbon (i.e. sum of EC and OC), but statistically significant differences were observed in the split between the measured EC and OC. IMPROVE_A EC values were always larger than both NIOSH5040 and EUSAAR2 protocols. These methods exhibited significantly different temperature-distributions based on thermogram analysis, which is normalized to total carbon. In this study, a protocol for carbonaceous analysis is suggested for the Korean Peninsula.

Exhaust Emissions Characteristics on the SI Engine according to the Air-Fuel Mixture with Ozone (혼합기 오존 첨가에 따른 SI기관의 배기배출물 특성)

  • Lee, B.H.;Yi, C.S.;Lee, Y.H.;Lee, C.K.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.5-10
    • /
    • 2006
  • In a conventional and lean operating engine, the state of mixture is very important in the combustion and emission characteristics. Lean operation is known to decrease the formation while maintaining a good fuel economy, but the unstable operation due to misfire and erratic combustion prevents engines from being operated at very lean mixtures, so both combustion rates and exhaust emission formation need to be satisfied comparably. In this study, it is designed and experimented the modified engine, and analyzed the combustion and exhaust emission according to the change of engine speed and with adding ozone. The conclusions were drawn out and enumerated as follows. 1. At the experimental result of automobile diesel engine, it has been verified that the formation of particulate matter(PM) gas is able to be lower with the addition of optimum quantities of ozone. 2. Carbon monoxide(CO) was formed by the lack of oxygen and the thermal dissociation in the combustion process. Therefore, with the change of swirl valve's position and addition of oxygen and ozone, CO formation was decreased by the increasing of excessive O2, but it was increased by the temperature of combustion gas growing higher. As a result of the two effects, CO formation was decreased in this study. 3. Hydrocarbon(HC) was formed by the lack of O2, and the flow of mixture in cylinder. According to opening of the swirl valve and adding the oxygen and ozone, hydrocarbon gas was decreased by 20%, 9%, and 27.5%, respectively. 4. Nitric oxides($NO_x$) was strongly affected by the combustion gas temperature. As a result of respectively experimental conditions, $NO_x$ formation was increased about 20% due to (be the) high(er) combustion gas temperature.

  • PDF

The metallic composition of airborne particles in seven locations of Seoul city, Korea (대기 분진 중 중금속 성분의 공간적 농도분포 특성 비교: 서울시 7개 관측점을 중심으로)

  • Choi, Bae-Jin;Kim, Ki-Hyun
    • Analytical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.143-151
    • /
    • 2003
  • In the present study, we made measurements of PM-bound metal concentrations from seven different urbanized locations in Seoul for the period covering March 2001 through May 2002. The measurement data were analyzed to explore the possible influences of spatial factors on metal distribution characteristics. To check for the importance of such aspects on metal distribution characteristics, the measured data were compared between different metals and between different sites by several criteria including (1) coefficient of variation (CV) values; (2) temporal variability; and (3) the abundance of strongly correlated pairs. The overall results of our study indicate strong diversity in the distribution characteristics of different metals. It is found that some metals (like Fe, Mn, and Pb) tend to exhibit strong compatibility among different study sites. However, no such compatibility appears to exist for certain metals like Cu. To account for the importance of spatial factors, complex relationships between source/sink processes and geochemical characteristics of a given metallic component may have to be examined in a systematic manner.