• Title/Summary/Keyword: PLL

Search Result 951, Processing Time 0.027 seconds

A $0.5{\mu}m$ CMOS FM Radio Receiver For Zero-Crossing Demodulator (Zero-Crossing 복조기를 위한 $0.5{\mu}m$ CMOS FM 라디오 수신기)

  • Kim, Sung-Woong;Kim, Young-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.100-105
    • /
    • 2010
  • In this paper, a FM radio receiver integrated circuit has been developed based on $0.5{\mu}m$ CMOS process for Zero-Crossing FM demodulator over the 88MHz to 108MHz band. The receiver is designed with the low-IF architecture, and includes Low Noise Amplifier(LNA), Down-Conversion Mixer, Phase Locked Loop(PLL), IF LPF, and a comparator. The measured results of the LNA and Mixer show that the conversion gain of 23.2 dB, the input PldB of -14 dBm, and the noise figure of 15 dB. The measured analog block of the LPF and comparator show the voltage gain of over 89 dB, and the IF LPF can configure the passband from 600KHz to 1.3MHz with 100KHz step through the internal control register banks. The designed FM radio receiver operates at 4.5V with the total current consumption of 15.3mA, so the total power consumption is about 68.85mW. The commercial FM radio has been successfully received.

The development of laser doppler vibrometer using DPLL for the detection of ultrasonic vibration (Digital PLL을 이용한 초음파진동 측정용 레이저 도플러 진동계의 개발)

  • 김호성
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.5
    • /
    • pp.306-311
    • /
    • 2000
  • This paper deals with the development of Laser Doppler Vibrometer (LDV) that can mea~ure the tlequency and amphlude of the ultrasonic vibralion. Hc-Ne laser (632.8 om) is used as a light source, and Michelson interferometer in winch frequency of the objective beam is shIfted by Bragg cell IS adopted The frequency modulated signal centered at 40 MHz flom the PIN diode IS amplified. down-col1vel1ed to 2.5 MHz, filtered and digiLized. The voltage output that is proportional to the velocity of the vibratwg surface is obtawed using digItal PLL. A microprocessor is used to extract the frequcncy aud amplitude of the vibratIOn from the voltage output. It is found that the developed LDV can measure up to 300 kHz vibratIOn and the mlillmUITI measurable amplitude is I nm at 300 kHz. We believe thatlhis LDV can be used to measure the vibratIOn of the heavy electric maclllnery and micro-size structures. tures.

  • PDF

Design and Performance Analysis of 60GHz Wireless Communication System for Low Power Consumption and High Link Quality (저전력 및 고품질의 60GHz대역 무선 통신 시스템 설계와 성능 분석)

  • Bok, Junyeong;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.2
    • /
    • pp.209-216
    • /
    • 2013
  • In this paper, we design and analyze digital retrodirective array antenna (RDA) system in 60GHz wireless communication for low power consumption and high quality. Digital RDA can automatically make beam toward source without information about the direction of incoming signal, this system is able to do low power communication thanks to increased signal to interference noise ratio (SINR) because making the beam toward source can reduce interference signals. The frequency offset seriously arises when millimetric wave band like 60GHz is used to communicate for high-speed transmission. The proposed system is robustly designed to frequency offset through designing digital phase lock loop in order to solve the problem of frequency offset. In this paper, we analyze the performance of the proposed system according to the number of array antenna and frequency offset. striking space.

The Study on the implementation and design of the RF transceiver for fast frequency hopping (고속주파수 도약용 RF송수신기 설계 및 구현에 대한 연구)

  • Kim, Ki-Jung;Kim, Jong-Sung;Bae, Moon-Kwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.6
    • /
    • pp.591-596
    • /
    • 2016
  • This paper presents a study on the subject for the design and implementation of high-speed frequency hopping RF transceiver used for tactical communications systems. Jump the transmission / reception frequency of the L-band to hop tens per second is possible by maximizing the immunity to interference, and is applicable to communication systems having a charging rotation function. To high-speed frequency hopping it is necessary to apply the necessary fast frequency hopping scheme DDS Driven PLL added. In this paper, the RF transceiver design and simulation analysis capabilities with fast frequency tactical communication systems, were implemented after the main test for functionality and performance. Was demonstrated hop high-speed jump tens per second through a test, the main transmission output, were measured RF key performance, such as received noise figure, by using the VSG and VSA generates a ${\pi}/4$ DQPSK modulated signal constellation and by EVM measurement that there is no problem in applying the communications system described above was pre-validated.

A Maximum Likelihood Estimator Based Tracking Algorithm for GNSS Signals

  • Won, Jong-Hoon;Pany, Thomas;Eissfeller, Bernd
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.15-22
    • /
    • 2006
  • This paper presents a novel signal tracking algorithm for GNSS receivers using a MLE technique. In order to perform a robust signal tracking in severe signal environments, e.g., high dynamics for navigation vehicles or weak signals for indoor positioning, the MLE based signal tracking approach is adopted in the paper. With assuming white Gaussian additive noise, the cost function of MLE is expanded to the cost function of NLSE. Efficient and practical approach for Doppler frequency tracking by the MLE is derived based on the assumption of code-free signals, i.e., the cost function of the MLE for carrier Doppler tracking is used to derive a discriminator function to create error signals from incoming and reference signals. The use of the MLE method for carrier tracking makes it possible to generalize the MLE equation for arbitrary codes and modulation schemes. This is ideally suited for various GNSS signals with same structure of tracking module. This paper proposes two different types of MLE based tracking method, i.e., an iterative batch processing method and a non-iterative feed-forward processing method. The first method is derived without any limitation on time consumption, while the second method is proposed for a time limited case by using a 1st derivative of cost function, which is proportional to error signal from discriminators of conventional tracking methods. The second method can be implemented by a block diagram approach for tracking carrier phase, Doppler frequency and code phase with assuming no correlation of signal parameters. Finally, a state space form of FLL/PLL/DLL is adopted to the designed MLE based tracking algorithm for reducing noise on the estimated signal parameters.

  • PDF

Robustness Examination of Tracking Performance in the Presence of Ionospheric Scintillation Using Software GPS/SBAS Receiver

  • Kondo, Shun-Ichiro;Kubo, Nobuaki;Yasuda, Akio
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.235-240
    • /
    • 2006
  • Ionospheric scintillation induces a rapid change in the amplitude and phase of radio wave signals. This is due to irregularities of electron density in the F-region of the ionosphere. It reduces the accuracy of both pseudorange and carrier phase measurements in GPS/satellite based Augmentation system (SBAS) receivers, and can cause loss of lock on the satellite signal. Scintillation is not as strong at mid-latitude regions such that positioning is not affected as much. Severe effects of scintillation occur mainly in a band approximately 20 degrees on either side of the magnetic equator and sometimes in the polar and auroral regions. Most scintillation occurs for a few hours after sunset during the peak years of the solar cycle. This paper focuses on estimation of the effects of ionospheric scintillation on GPS and SBAS signals using a software receiver. Software receivers have the advantage of flexibility over conventional receivers in examining performance. PC based receivers are especially effective in studying errors such as multipath and ionospheric scintillation. This is because it is possible to analyze IF signal data stored in host PC by the various processing algorithms. A L1 C/A software GPS receiver was developed consisting of a RF front-end module and a signal processing program on the PC. The RF front-end module consists of a down converter and a general purpose device for acquiring data. The signal processing program written in MATLAB implements signal acquisition, tracking, and pseudorange measurements. The receiver achieves standalone positioning with accuracy between 5 and 10 meters in 2drms. Typical phase locked loop (PLL) designs of GPS/SBAS receivers enable them to handle moderate amounts of scintillation. So the effects of ionospheric scintillation was estimated on the performance of GPS L1 C/A and SBAS receivers in terms of degradation of PLL accuracy considering the effect of various noise sources such as thermal noise jitter, ionospheric phase jitter and dynamic stress error.

  • PDF

A compensation algorithm of cycle slip for synchronous stream cipher (동기식 스트림 암호 통신에 적합한 사이클 슬립 보상 알고리즘)

  • 윤장홍;강건우;황찬식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1765-1773
    • /
    • 1997
  • The communication systems which include PLL may have cycle clip problem because of channel noise. The cycle slip problem occurs the synchronization loss of communication system and it may be fatal to the synchronous stream cipher system. While continuous resynchronization is used to lessen the risk of synchronization it has some problems. In this paper, we propose the method which solve the problems by using continuous resynchronization with the clock recovery technique. If the counted value of real clock pulse in reference duration is not same as that of normal state, we decide the cycle slip has occurred. The damaged clock by cycle slip is compensated by adding or subtracting the clock pulse according to the type of cycle slip. It reduced the time for resynchronization by twenty times. It means that 17.8% of data for transmit is compressed.

  • PDF

Design of a 5.2GHz/2.4GHz Dual band CMOS Frequency Synthesizer for WLAN (WLAN을 위한 5.2GHz/2.4GHz 이중대역 주차수 합성기의 설계)

  • Kim, Kwang-Il;Lee, Sang-Cheol;Yoon, Kwang-Sub;Kim, Seok-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1A
    • /
    • pp.134-141
    • /
    • 2007
  • This paper presents a frequency synthesizer(FS) for 5.2GHz/2.4GHz dual band wireless applications which is designed in a standard $0.18{\mu}m$ CMOS1P6M process. The 2.4GHz frequency is obtained from the 5.2GHz output frequency of Voltage Controlled Oscillator (VCO) by using the Switched Capacitor (SC) and the divider-by-2. Power dissipations of the proposed FS and VCO are 25mW and 3.6mW, respectively. The tuning range of VCO is 700MHz and the locking time is $4{\mu}s$. The simulated phase noise of PLL is -101.36dBc/Hz at 200kHz offset frequency from 5.0GHz with SCA circuit on.

Cytologic Features of Ascitic Fluid Complicated by Small Cell Variant T-cell Prolymphocytic Leukemia -A Case Report - (복수를 침범한 소세포형 T-세포 전림프구성 백혈병의 세포소견 -1예 보고-)

  • Han, Jee-Young;Kim, Jin-Soo;Kim, Dong-Hoon;Kim, Lucia;Park, In-Suh;Kim, Joon-Mee;Chu, Young-Chae;Choi, Suk-Jin
    • The Korean Journal of Cytopathology
    • /
    • v.19 no.2
    • /
    • pp.168-172
    • /
    • 2008
  • T-cell prolymphocytic leukemia (T-PLL) is a rare, mature T-cell lymphoproliferative disorder with a post-thymic mature T-cell phenotype. The disease is characterized by rapidly rising lymphocytosis, lym-phadenopathy, and splenomegaly. The clinical course is usually aggressive and progresses with frequent skin lesions and serous effusions. In 25% of cases, leukemic cells are small and tumor cells may not have a discrete nucleolus under light microscopy. Although the presence of characteristic cytoplasmic protrusions or blebs in tumor cells is a common morphologic finding in the peripheral blood film irrespective of the nuclear features, small cell variants lacking the typical nuclear features can cause diagnostic problems in clinical cytology. Furthermore, the small leukemic cells can share some cytologic findings with lymphocyte-rich serous effusions caused by non-neoplastic reactive lymphocytosis as well as other small lymphocytic lymphoproliferative disorders. Here, we describe the cytological findings of ascitic fluid complicated by small cell variant T-PLL in a 54-year-old man, the cytology of which was initially interpreted as small lymphocytic malignancy such as small lymphocytic lymphoma/chronic lymphocytic leukemia.

Analysis of Effect of Spoofing Signal According to Code Delay in GPS L1 Signal (GPS L1 신호에서 코드지연에 따른 기만신호 영향 분석)

  • Kim, Tae-Hee;Sin, Cheon-Sig;Lee, Sang-Uk
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.1
    • /
    • pp.128-133
    • /
    • 2012
  • In this paper, we analysis the effect of error of code tracking and frequency tracking according to the chip delay of spoofing signal through the simulation. Firstly, we investigate the type of spoofing signal and defense technical of spoofing attack. For simulation, we generated the intermediate spoofing signal using the software GNSS signal generator simulator(SGGS), the intermediate spoofers synchronize its counterfeit GPS signals with the current broadcast GPS signals. The software GPS receiver simulator(SGRS) received the spoofing signal and normal signal from SGGS, and process the signals. In paper, we can check that the DLL and PLL tracking loop error are generated and pseudo-range is changed non-linear according to chip delay of spoofing signal when the spoofing signal is entered. As a result, we can check that navigation solution is incorrectly effected by spoofing signal.