• Title/Summary/Keyword: PLGA

Search Result 282, Processing Time 0.024 seconds

Preparation of 5-Fluorouracil-Loaded Poly(L-lactide-co-glycolide) Wafer and Evaluation of In Vitro Release Behavior

  • Lee, Jin-Soo;Chae, Gang-Soo;An, Tae-Kun;Gilson Khang;Cho, Sun-Hang;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • v.11 no.3
    • /
    • pp.183-188
    • /
    • 2003
  • The controlled delivery of anticancer agents using biodegradable polymeric implant has been developed to solve the problem of penetration of blood brain barrier and severe systemic toxicity. This study was performed to prepare 5-FU-loaded poly (L-lactide-co-glycolide) (PLGA) wafer fabricated microparticles prepared by two different method and to evaluate their release profile for the application of the treatment of brain tumor. 5-FU-loaded PLGA microparticles were characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), and differential scanning calorimetry (DSC). SEM observation of the 5-FU-loaded PLGA microparticles prepared by rotary solvent evaporation method showed that 5-FU was almost surrounded by PLGA and significant reduction of crystallinity of 5-FU was confirmed by XRD. In case of release profile of 5-FU from 5-FU-loaded PLGA wafer fabricated microparticles prepared by mechanical mixing, the release profile of 5-FU followed near first order release kinetics. In contrast to the above result, release profile of 5-FU from 5-FU-loaded PLGA wafer fabricated microparticles prepared by rotary solvent evaporation method followed near zero order release kinetics. These results indicate that preparation method of the 5-FU-loaded PLGA microparticles to fabricate into wafers was contributed to drug release profile.

Osteogenic Differentiation of Human Adipose-derived Stem Cells within PLGA(Poly(D,L-lactic-co-glycolic acid)) Scaffold in the Nude Mouse (누드 마우스에서 Poly(D,L-lactic-co-glycolic acid) (PLGA) 지지체 내 인체 지방줄기세포의 골성분화)

  • Yoo, Gyeol;Cho, Sung Don;Byeon, Jun Hee;Rhie, Jong Won
    • Archives of Plastic Surgery
    • /
    • v.34 no.2
    • /
    • pp.141-148
    • /
    • 2007
  • Purpose: The object of this study was to evaluate the development of continuous osteogenic differentiation and bone formation after the subcutaneous implantation of the tissue-engineered bone, in vitro. Methods: Human adipose-derived stem cells were obtained by proteolytic digestion of liposuction aspirates. Adipose-derived stem cells were seeded in PLGA scaffolds after being labeled with PKH26 and cultured in osteogenic differentiation media for 1 month. The PLGA scaffolds with osteogenic stimulated adipose-derived stem cells were implanted in subcutaneous layer of four nude mice. Osteogenesis was assessed by RT-PCR for mRNA of osteopontin and bone sialoprotein(BSP), and immunohistochemistry for osteocalcin, and von Kossa staining for calcification of extracellular matrix at 1 and 2 months. Results: Implanted PLGA scaffold with adipose-derived stem cells were well vascularized, and PLGA scaffolds degraded and were substituted by host tissues. The mRNA of osteopontin and BSP was detected by RT-PCR in both osteogenic stimulation group and also osteocalcin was detected by immunohistochemistry at osteogenic stimulation 1 and 2 months, but no calcified extracellular deposit in von Kossa stain was found in all groups. Conclusion: In vivo, it could also maintain the characteristics of osteogenic differentiation that adipose-derived stem cells within PLGA scaffold after stimulation of osteogenic differentiation in vitro, but there were not normal bone formation in subcutaneous area. Another important factor to consider is in vivo, heterologous environment would have negative effect on bone formation as.[p1]

Mixture Density Measurement of Biodegradable Poly(lactide-co-glycolide) Copolymer in Supercritical Solvents (초임계 용매내에서 생분해성 Poly(lactide-co-glycolide) 공중합체의 혼합물 밀도 측정)

  • 변헌수
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.505-512
    • /
    • 2000
  • The mixture density data for poly(lactide-co-glycolide) [PLGA] with supercritical $CO_2$, CHF$_3$ and CHClF$_2$ were obtained in the temperature range of 27 to 10$0^{\circ}C$ and at pressures as high as 3000 bar (PLGA$_{x}$, Where the molar concentration of glycolide in the backbone, x, range from 0 to 50 mol%). The PLA-$CO_2$, PLA-CHF$_3$, and PLA-CHClF$_2$ systems dissolve in the pressure less than 1430 below 700, and below 100 bar, respectively. The mixture density shows from 1.084 to 1.334 g/cm$^3$ at temperatures from 27 to 93$^{\circ}C$. The PLGA$_{15}$ -$CO_2$ mixture dissolves at pressures of below 1900 bar and the mixture density is in the range of 1.158 to 1.247 g/cm$^3$ at temperatures between 37 and 92$^{\circ}C$. The solubilities of the PLGA$_{25}$ for $CO_2$, CHF$_3$, and CHClF$_2$ are shown to pressure as high as 2390, 1470, and 118 bar, respectively, and the mixture density exhibits iron 1.154 to 1.535 g/cm$^3$ at temperatures from 29 to 81$^{\circ}C$. The PLGA$_{50}$-$CO_2$ system does not dissolve at 24$0^{\circ}C$ and 3000 bar while the PLGA$_{50}$-CHCIF$_2$ does easily at 5$0^{\circ}C$ and 100 bar. The mixture density for the PLGA-CHClF$_2$ system increases even at low pressures as the glycolide molar concentration increases.es.es.

  • PDF

The New Strategy of Formulation of Human Growth Hormone Aggregate within PLGA Microspheres for Sustained Release

  • Kim, Hong-Gi;Park, Tae-Gwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.541-545
    • /
    • 2000
  • For the sustained release formulation of recombinant human growth hormone (rhGH), dissociable rhGH aggregates were microencapsulated within poly(D,L-lactic-co-glycolic acid) [PLGA] microparticles. rhGH aggregates with 2 - 3 m Particle diameter were first produced by adding a small volume of aqueous rhGH solution into a partially water miscible organic solvent phase(ethyl acetate) containing PLGA. These rhGH aggregates were then microencapsulated within PLGA polymer phase by extracting ethyl acetate into an aqueous phase pre-saturated with ethyl acetate. The resultant microparticles were 2 - 3 m in diameter similar to the size of rhGH aggregates, suggesting that PLGA polymer was coated around the protein aggregates. Release profiles of rhGH from these microparticles were greatly affected by changing the volume of the incubation medium. The release rhGH species consisted of mostly monomeric form with having a correct conformation. This study reveals that sustained rhGH release could be achieved by microencapsulating reversibly dissociable protein aggregates within biodegradable polymers.

  • PDF

Enhancement of Thermomechanical Properties of Poly(D, L-lactic-co-glycolic acid) and Graphene Oxide Composite Films for Scaffolds

  • Yoon, Ok-Ja;Sohn, Il-Yung;Kim, Duck-Jin;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.548-548
    • /
    • 2012
  • Thermomechanical and surface chemical properties of composite films of poly(D, L-lactic-co-glycolic acid) (PLGA) were significantly improved by the addition of graphene oxide (GO) nanosheets as nanoscale fillers to the PLGA polymer matrix. Enhanced thermomechanical properties of the PLGA/GO (2 wt.%) composite film, including an increase in the crystallization temperature and reduction in the weight loss, were observed. The tensile modulus of a composite film with increased GO fraction was presumably enhanced due to strong chemical bonding between the GO nanosheets and PLGA matrix. Enhanced hydrophilicity of the composite film due to embedded GO nanosheets also improved the biocompatibility of the composite film. Improved thermomechanical properties and biocompatibility of the PLGA composite films embedded with GO nanosheets may be applicable to biomedical applications such as scaffolds.

  • PDF

Stability of Octreotide Acetate in Aqueous Solutions and PLGA Films

  • Ryu, Ki-Won;Na, Dong-Hee
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.5
    • /
    • pp.353-357
    • /
    • 2009
  • As a synthetic analog of the naturally occurring hormone somatostatin, octreotide has been commercially formulated in poly(lactide-co-glycolide) (PLGA) microspheres for the treatment of acromegaly. The purpose of this study was to evaluate stability of octreotide acetate in aqueous solutions at various pH values and PLGA films. Stability-indicating reversed-phase high-performance liquid chromatographic method was developed with good precision and accuracy, and it was applied to the stability studies. In aqueous solutions at pH 2.5-9.0, the degradation of octreotide followed approximately first order kinetics and the most favorable stability was found at pH 4. In PLGA films, the formation of acylated octreotides reached approximately 55% of the released octreotides. Various acylated octreotides was structurally identified by liquid chromatography-mass spectrometric analysis.

The Evaluation of Fabrication Parameters Process Effect on the Formation of Poly(lactic-co-glycolic acid) (PLGA) Microspheres

  • Bao, Trinh-Quang;Lee, Byong-Taek
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1465-1470
    • /
    • 2011
  • In this study, a poly(lactic-co-glycolic acid) (PLGA) microspheres was fabricated using emulsion solvent evaporation technique. During the procedure fabrication, some parameters process have effected on the formation of micro-carriers. The structure and morphology of micro-carriers were evaluated by SEM observation. Beside, heparin incorporated into microspheres was determined using toluidine blue method. Specifically, the effects of some parameters process such as ultrasonic levels, PLGA concentrations and freeze-dry times on the size, structure, porous formation and heparin entrapment of micro-carriers were studied carefully. We found that, the morphology and structure of carriers were influenced by the all above parameters. The diameter of the carriers varied from 20 to 400 ${\mu}M$ depending on experimental conditions. At suitable freeze-dry time, the pores were automatically formation on surface of microspheres with a significantly in the numbers of pore. After heparin incorporated porous PLGA microspheres, it was suggested that the highly heparin incorporated into porous PLGA microspheres could enhance of angiogenesis for tissue regeneration easily.

Preparation and Characterization of Rosiglitazone-loaded PLGA Nanoparticles (Rosiglitazone약물을 함유한 PLGA 나노입자 제조 및 분석)

  • Shin, Ko-Eun;Huh, Kang-Moo;Lee, Yong-Kyu
    • KSBB Journal
    • /
    • v.23 no.5
    • /
    • pp.408-412
    • /
    • 2008
  • The rosiglitazone loaded poly (lactide-co-glycolide) (PLGA) nanoparticles (NPs) were prepared by the emulsion-evaporation method and optimized for particle size and entrapment efficiency. The optimized particles were 140-180 nm in size with narrow size distribution and 80% entrapment efficiency at 1% w/w initial drug loading when prepared with 1-3% w/v of PVA as a surfactant. These particulate carriers exhibited controlled in vitro release of rosiglitazone for 36 hrs at a nearly constant rate after 4 hrs release. In conclusion, these results indicate that PLGA NPs have greater potential for oral delivery of rosiglitazone.

Polymorphous Low-grade Adenocarcinoma of the Palate: Case Report (구개부에 발생한 다형성 저등급 선암종: 증례보고)

  • Ryu, Hye-In;Jee, Yu-Jin;Lee, Deok-Won;Kim, Tae-Hee;Hong, Sung-Ok;Ryu, Dong-Mok
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.1
    • /
    • pp.65-70
    • /
    • 2012
  • Polymorphous low-grade adenocarcinoma (PLGA) is a neoplasm that is regarded as the second most common malignant salivary gland tumor after mucoepidermoid carcinoma. After the diagnosis of PLGA it is important to make a treatment decision and consider the prognosis. A histopathologic examination is necessary for diagnosis. Treatment is primarily surgical excision and long-term follow up is essential to evaluate local recurrences. This report describes 2 cases of PLGA located in the soft palate without any evidence of metastasis. The first case was PLGA with bony infiltration and an irregular margin lesion. The second case was PLGA localized in palatal soft tissue. We present diagnoses, histopathologic features, treatments and prognosis of PLGA.

Development of New Reverse Micellar Microencapsulation Technique to Load Water-Soluble Drug into PLGA Microspheres

  • Kim Hyun Joo;Cho Mi Hyun;Sah Hong Kee
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.370-375
    • /
    • 2005
  • The objective of this study was to develop a new reverse micelle-based microencapsulation technique to load tetracycline hydrochloride into PLGA microspheres. To do so, a reverse micellar system was formulated to dissolve tetracycline hydrochloride and water in ethyl formate with the aid of cetyltrimethylammonium bromide. The resultant micellar solution was used to dissolve 0.3 to 0.75 g of PLGA, and microspheres were prepared following a modified solvent quenching technique. As a control experiment, the drug was encapsulated into PLGA microspheres via a conventional methylene chloride-based emulsion procedure. The micro­spheres were then characterized with regard to drug loading efficiency, their size distribution and morphology. The reverse micellar procedure led to the formation of free-flowing, spherical microspheres with the size mode of 88 ~m. When PLGA microspheres were prepared follow­ing the conventional methylene chloride-based procedure, most of tetracycline hydrochloride leached to the aqueous external phase: A maximal loading efficiency observed our experimental conditions was below $5\%$. Their surfaces had numerous pores, while their internal architecture was honey-combed. In sharp contrast, the new reverse micellar encapsulation technique permitted the attainment of a maximal loading efficiency of 63.19 $\pm$$0.64\%$. Also, the microspheres had smooth and pore-free surfaces, and hollow cavities were absent from their internal matrices. The results of this study demonstrated that PLGA microspheres could be successfully prepared following the new reverse micellar encapsulation technique.