• Title/Summary/Keyword: PLASMA SURFACE TREATMENT

Search Result 989, Processing Time 0.024 seconds

Plasma Engineering for Nano-Materials

  • Kim, Seong-In;Shin, Myoung-Sun;Son, Byung-Koo;Song, Seok-Kyun;Choi, Sun-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.79-79
    • /
    • 2012
  • A high temperature and a low temperature plasma process technologies were developed and demonstrated for synthesis, hybrid formation, surface treatment and CVD engineering of nano powder. RF thermal plasma is used for synthesis of spherical nano particles in a diameter ranged from 10 nm to 100 nm. A variety of nano particules such as Si, Ni, has been synthesized. The diameter of the nano-particles can be controlled by RF plasma power, pressure, gas flow rate and raw material feed rate. A modified RF thermal plasma also produces nano hybrid materials with graphene. Hemispherical nano-materials such as Ag, Ni, Si, SiO2, Al2O3, size ranged from 30 to 100 nm, has been grown on graphene nanoplatelet surface. The coverage ranged from 0.1 to 0.7 has been achieved uniformly over the graphene surface. Low temperature AC plasma is developed for surface modification of nano-powder. In order to have a three dimensional and lengthy plasma treatment, a spiral type of reactor has been developed. A similar plasma reactor has been modfied for nano plasma CVD process. The reactor can be heated with halogen lamp.

  • PDF

Powder Characteristics of Fly Ash Beneficiated by Cold Plasma and Heat Treatment

  • Lee, Seung-Heun;Cho, Un-Jin;Kwon, Sung-Ku
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.93-98
    • /
    • 2016
  • Cold plasma and heat treatment were selected as technologies to reduce unburned carbon in fly ash to less than 1.0%. Both cold plasma and heat treatment made it possible to eliminate unburned carbon to less than 1.0%. In the case of fly ash, which almost entirely eliminated unburned carbon with an ignition loss of 0.5%, heat treatment caused adhesion among particles and the BET specific surface area rapidly decreased as the mean particle size increased. On the other hand, with cold plasma, unburned carbon elimination caused the BET specific surface area to decrease and, as no adhesion occurred among particles, the mean particle size became small. Also, cold plasma treatment allowed small spherical particles confined within the unburned carbon particles to be released with the elimination of the unburned carbon frame, so that the quantity of fine particles had a tendency to slightly increase.

Influence of Plasma Treatment on The Soil Release Properties of Polyester Fabrics (플라즈마처리가 폴리에스테르 직물의 오염제거성에 미치는 연구)

  • Kwon, Young-Ah
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.434-435
    • /
    • 2003
  • Physicochemical properties of a polymer surface significantly affect adhesion, wetting, and dyeing properties. In recent years, low temperature plasma technology has been widely used for surface modification of polymers. Surface fluorination by low temperature plasma treatment has been employed to improve the water and oily repellency of textile fabrics. However, very few results have been reported on soil release properties of the oxygen plasma treated textile fabrics. (omitted)

  • PDF

Adhesion and Electrical Performance by Plasma Treatment on Semiconductive-Insulation Interface Layer of Silicone Rubber (실리콘 고무의 플라즈마 표면처리된 반도전-절연계면 처리에 따른 접착특성과 절연성능)

  • Hwang, Sun-Mook;Lee, Ki-Taek;Hong, Joo-Il;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.11-14
    • /
    • 2004
  • In this paper, the effect of adhesion properties of semiconductive-insulating interface layer of silicone rubber on electrical properties was investigated. The modifications produced on the silicone surface by oxygen plasma were accessed using ATR-FTIR, contact angle and AFM. Adhesion was obtained from T-peel tests of semiconductive layer having different treatment durations. In addition, ac breakdown test was carried out for elucidating the change of electrical property with duration of plasma treatment. From the results, the treatment in the oxygen plasma produced a noticeable increase in surface energy, which can be mainly ascribed to the the creation of O-H and C=O. It is observed that adhesion performance was determined by not surface energy but roughness level of silicone surface. It is found that ac dielectric strength was increased with improving the adhesion between the semiconductive and insulating interface.

  • PDF

Improving Hydrophilic and Finishing Performance of Dyeable PP through Atmospheric Pressure Plasma Treatment (플라즈마 처리를 통한 가염PP의 친수화도 및 가공성능 향상)

  • Cho, Hang Sung
    • Textile Coloration and Finishing
    • /
    • v.34 no.3
    • /
    • pp.165-172
    • /
    • 2022
  • Polypropylene(PP) is a textile material with various functions such as eco-friendliness, lightness, and elasticity. Although most synthetic fibers can be dyed and finished, but original PP is difficult to dye or finish due to its extremely hydrophobic properties, so its application expansion is limited. In order to solve this problem, dyeable PP was developed, and various researches on textiles for clothing such as mass production technology, fine fiberization and performance improvement are in progress. Plasma treatment is a processing method for modifying the surface of fabrics, and has effects such as hydrophilization, deepening color, improving adhesion, and surface polymerization. In this study, plasma treatment was applied to study changes in hydrophilization properties of dyeable PP, surface changes before and after plasma treatment and performance according to hydrophilization.

The Effect of the Anti-corrosion by$CHF_3$ Treatment after Plasma Etching of Al Alloy Films (Al 합금막의 식각후 $CHF_3$ 처리에 의한 부식억제 효과)

  • 김창일;권광호;윤용선;백규하;남기수;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.7
    • /
    • pp.517-521
    • /
    • 1998
  • After etching Al-Cu alloy films using $SiCl_4/Cl_2/He/CHF_3$ plasma, a corrosion phenomenon on the metal surface has been studied with XPS(X-ray pheotoelectron spectroscopy) and SEM (Scanning electron microscopy). In Al-Cu alloy system, the corrosion occurs rapidly on the etched surface by residual chlorine atoms. To prevent the corrosion, $CHF_3$ plasma treatment subsequent to the etch has been carried put. A passivation layer is formed by fluorine-related compounds on the etched Al-Cu surface after $CHF_3$ treatment, and the layer suppresses effectively the corrosion on the surface as the $CHF_3$treatment in the pressure of 300m Torr.

  • PDF

Enhanced Hydrophilicity of Polyethersulfone Membrane by Various Surface Modification Methods (다양한 표면개질을 이용한 폴리에테르설폰 막의 친수성 향상)

  • Park, So Jung;Hwang, Jun Seok;Choi, Won-Kil;Lee, Hyung Keun;Huh, Kang Moo
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.205-212
    • /
    • 2014
  • Polyethersulfone (PES) membranes were modified by various physico-chemical modification methods to enhance the surface hydrophilicity for application as a separation membrane to separate and collect water vapor from the flue gas. Homogeneous PES flat-sheet membranes were prepared and modified by acid treatment, blending and plasma treatment for hydrophilic surface modification. The surface characteristics of the modified PES membranes were evaluated by ATR-FTIR, XPS, SEM and contact angle measurements. No significant change in hydrophilicity was observed for the PES membranes modified by acid treatment with sulfuric acid or blending with various compositions of poloxamer as an amphiphilic PEO-PPO-PEO tri-block copolymer. On the other hand, Ar plasma treatment led to a significant increase in the hydrophilicity of the surface, depending on the plasma treatment time. As a result, the PES membrane could be the most efficiently surface-treated by applying the plasma treatment for enhancing their surface hydrophilicity.

The Effect of the Enzyme Treatment and the Plasma Pre- Treatment on Environment Friendly Fabrics (친환경 소재에 대한 플라즈마 가공과 효소가공이 감량률에 미치는 영향)

  • Kim, Ji-Hyun
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.11 no.1
    • /
    • pp.43-51
    • /
    • 2009
  • The cotton, wool, cotton/wool blended(80:20) and tencel fabrics were treated with low temperature oxygen or argon plasma, enzymes(cellulase or protease), or oxygen plasma-enzyme and examined for their weight loss and conditions for treatment for the environment friendly finishing. In the plasma treatment argon gas had better effect on the weight loss than oxygen gas did and the weight loss of all the fabrics was increased as increasing discharge power and discharge time. The weight loss of cotton, wool, cotton/wool blended(80:20) fabrics decreased in a large measure after 1 hr but that of tencel didn't decrease after 1 hr. In case of cellulose fibers oxygen gas plasma induced chemical functional groups on the surface of substrate more than argon gas plasma did so the weight loss of wool was larger than that of cotton, tencel fabrics in oxygen plasma-enzyme treatment. The weight loss of cotton and tencel fabrics decreased the initial stage because oxygen plasma pre-treatment caused cross linking as well as etching effect but argon plasma pre-treatment didn't. The plasma pre-treatment cleared the way for enzyme treatment on the whole but oxygen plasma pre-treatment bear in hand the increase of weight loss more or less because of the cross linking on the surface of cellulose fibers. The appropriate conditions for plasma treatment was 10-1Torr, 40W for 30minutes and for cellulase treatment were enzyme concentration of $3g/{\ell}$, pH 5, $60^{\circ}C$ for 1hr and for protease treatment were enzyme concentration of $4g/{\ell}$ pH 8, $60^{\circ}C$ for 1hr.

  • PDF

Study on Properties Change of a-C Thin Film by N2 Plasma Treatment (질소 플라즈마처리에 의한 a-C 박막의 전계방출특성 변화에 관한 연구)

  • Ryu, Jeong-Tak;Lee, K.Y.;Honda, S.;Katayama M.;Oura, K.
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1332-1336
    • /
    • 2004
  • Amorphous carbon (a-C) films have been deposited on Si(100) substrate using RF magnetron system in order to investigate the electron field emission properties. The a-C films were treated by $N_2$ gas plasma at room temperature. Surface morphologices and structural properties of the a-C films before and after $N_2$ plasma treatment were observed by scanning electron microscopy and Raman spectroscope, respectively. Structural properties and surface morphology of the a-C films were changed by $N_2$ plasma treatment. The emission properties can be improved by the plasma treatment according to the contents of nitrogen on the a-C films which is varied by plasma treatment time. Before the plasma treatment, the a-C films are found to have a threshold field of 14 V/$\mu$m, but the a-C film treated by $N_2$ plasma for 30 min exhibit threshold field as low as 6.5 V/$\mu$m.

A Study on the Characteristics of Silicon Direct Bonding by Hydrogen Plasma Treatment (수소 플라즈마 처리에 의한 실리콘 직접접합 특성에 관한 연구)

  • Choe, U-Beom;Ju, Cheol-Min;Kim, Dong-Nam;Seong, Man-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.7
    • /
    • pp.424-432
    • /
    • 2000
  • The plasma surface treatment, using hydrogen gas, of the silicon wafer was investigated as a pretreatment for the application to silicon-on-insulator (SOI) wafers using the silicon direct bonding technique. The chemical reactions of hydrogen plasma with surfaces were used for both the surface activation and the removal of surface contaminants. As a result of exposure of silicon wafer to the plasma, an active oxide layer was formed on the surface, which was rendered hydrophilic. The surface roughness and morphology were estimated as functions of plasma exposing time as well as of power. The surface became smoother with decreased incident hydrogen ion flux by reducing plasma exposing time and power. This process was very effective to reduce the carbon contaminants on the silicon surface, which was responsible for a high initial surface energy. The initial surface energy measured by the crack propagation method was 506 mJ/m2, which was up to about three times higher than that of a conventional RCA cleaning method.

  • PDF