• 제목/요약/키워드: PLA/PBS blends

검색결과 3건 처리시간 0.016초

폴리유산/폴리부틸렌숙시네이트 블랜드의 가공 및 기계적, 열적, 형태학적 특성 (Processing and Mechanical, Thermal and Morphological Properties of Poly(lactic acid)/Poly(butylene succinate) Blends)

  • 김대근;조동환
    • 접착 및 계면
    • /
    • 제15권1호
    • /
    • pp.14-21
    • /
    • 2014
  • 본 연구에서는 이축압출기와 사출기를 사용하여 폴리유산(PLA)와 폴리부틸렌숙시네이트(PBS) 수지의 함량비를 달리하여 PLA/PBS 블랜드를 제조하고, 그들의 기계적, 열적 특성 및 모폴로지를 조사하였다. PLA/PBS 블랜드의 굴곡강도, 굴곡탄성률, 인장강도 및 인장탄성률과 같은 기계적 특성, 그리고 용융거동, 동역학적 열특성 및 열안정성과 같은 열적 특성이 PLA와 PBS 함량비에 크게 의존하였다. 그러나 PLA/PBS 블랜드의 열변형온도는 PLA 또는 PBS 함량 변화에 크게 영향을 받지 않았다. 또한 PLA/PBS 블랜드의 파단면은 PBS 함량이 증가함에 따라 brittle 양상으로부터 ductile 양상으로 변화되었다.

Compatibility of biodegradable poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) blends for packaging application

  • Bhatia, Amita;Gupta, Rahul K.;Bhattacharya, Sati. N.;Choi, H.J.
    • Korea-Australia Rheology Journal
    • /
    • 제19권3호
    • /
    • pp.125-131
    • /
    • 2007
  • Biodegradable polymeric blends are expected to be widely used by industry due to their environmental friendliness and comparable mechanical and thermal properties. Poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) are such biodegradable polymers which aim to replace commodity polymers in future applications. Since cost and brittleness of PLA is quite high, it is not economically feasible to use it alone for day to day use as a packaging material without blending. In this study, blends of PLA and PBS with various compositions were prepared by using a laboratory-scale twin-screw extruder at $180^{\circ}C$. Morphological, thermal, rheological and mechanical properties were investigated on the samples obtained by compression molding to explore suitability of these compositions for packaging applications. Morphology of the blends was investigated by scanning electron microscopy (SEM). Morphology showed a clear phase difference trend depending on blend composition. Modulated differential scanning calorimetry (MDSC) thermograms of the blends indicated that the glass transition temperature ($T_g$) of PLA did not change much with the addition of PBS, but analysis showed that for PLA/PBS blend of up to 80/20 composition there is partial miscibility between the two polymers. The tensile strength and modulus were measured by the Instron Universal Testing Machine. Tensile strength, modulus and percentage (%) elongation at break of the blends decreased with PBS content. However, tensile strength and modulus values of PLA/PBS blend for up to 80/20 composition nearly follow the mixing rule. Rheological results also show miscibility between the two polymers for PBS composition less than 20% by weight. PBS reduced the brittleness of PLA, thus making it a contender to replace plastics for packaging applications. This work found a partial miscibility between PBS and PLA by investigating thermal, mechanical and morphological properties.

생분해성 고분자를 이용한 조림묘목용 멀칭매트 원지 제조 (Preparation of Base Paper for Mulching Mat Sheet Using Biodegradable Polymer)

  • 이금자;박지현;강광호;김형진
    • 펄프종이기술
    • /
    • 제43권2호
    • /
    • pp.49-56
    • /
    • 2011
  • Mulching technique is used to control the temperature and moisture content of soil by covering the ground surface. Most kinds of mulching film are made of polyethylene which is non-biodegradable synthetic polymer. Utilizing these films has been one of the main sources in soil pollution. Thus residual films under the ground should be removed after a certain period of time. Therefore, an alternative mulching material made of biodegradable functional paper is considered instead of non-biodegradable films. The mulching sheet produced from paper basis has a functionality to be naturally degraded and then recycled to the bio-materials on soil. In this study, the paper based-mulching sheet coated with biodegradable polymer was specially produced using a laboratory bar coater. Coating colors prepared by dissolving PBS/PLA in chloroform were applied to kraft paper. The mechanical strength and aging properties of this mulching sheet were investigated. The burst strength of polymer-coated paper was decreased with the increase of the PBS ratio in PBS/PLA blends, and, in particular, 30/70 blending condition led to good stability in heat-aging atmosphere for 60 days.