• Title/Summary/Keyword: PKC-${\gamma}$

Search Result 46, Processing Time 0.024 seconds

Antagonists of Phosphatidylinositol 3-Kinase Block Phosphorylation-Dependent Activation of the Leukocyte NADPH Oxidase in a Cell-Free System

  • Park, Jeen-Woo
    • BMB Reports
    • /
    • v.30 no.3
    • /
    • pp.182-187
    • /
    • 1997
  • The NADPH oxidase of phagocytes catalyzes the reduction of oxygen to $O_2^-$ at the expense of NADPH. The enzyme is dormant in resting neutrophils and becomes activated on stimulation. During activation, $p47^{phox}\;(\underline{ph}agocyte\;\underline{ox}idase\;factor)$, a cytosolic oxidase subunit, becomes extensively phosphorylated at a number of serines located between S303-S379. Oxidase activation can also be achieved by the addition of phosphorylated recombinant $p47^{phox}$ by protein kinase C in the cell-free system in the presence of $GTP{\gamma}S$. The cell-free activation is inhibited by wortmannin and LY294002. specific inhibitors of phosphatidylinositol 3kinase (PI 3-kinasel) These results indicate that PI 3-kinase may playa pivotal role in the activation of NADPH oxidase.

  • PDF

Protein Kinase Modulates the $GABA_c$ Currents in Cone-horizontal Cell Axon-terminals Isolated from Catfish Retina

  • Paik, Sun-Sook;Lee, Sung-Jong;Jung, Chang-Sub;Bai, Sun-Ho
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.54-54
    • /
    • 1999
  • Protein kinase modulation of gamma-aminobutyric acid C (GABA$_{c}$) currents in freshly dissociated catfish retinal cone-horizontal cell axon-terminals was studied under voltage clamp with the use of the whole cell patch-clamp technique. Responses to pulses of GABA were monitored in intracellular application of adenosin 3',5'-cycle monophophate (cAMP)-dependent protein kinase (PKA) and protein kinase C (PKC) activators, and their inhibitors or inactive analogues.(omitted)d)

  • PDF

Cromakalim Blocks Membrane Phosphoinositide Activated Signals in the Guinea Pig Lung Mast Cells Stimulated with Antigen-Antibody Reactions

  • Ro, Jai-Youl;Kim, Ji-Young;Kim, Kyung-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.251-260
    • /
    • 1998
  • Cromakalim (BRL 34915), known as an airway smooth muscle relaxant, inhibited the releases of mediators in the antigen-induced mast cell activation. It has been suggested that cromakalim, in part, inhibited mediator releases by inhibiting the initial increase of 1,2-diacylglycerol (DAG) produced by the activation of the other phospholipase system which is different from phosphatidylcholine-phospholipase D pathway. The aim of this study is to further examine the inhibitory mechanism of cromakalim on the mediator release in the mast cell activation. Guinea pig lung mast cells were purified by using enzyme digestion and percoll density gradient. In purified mast cells prelabeled with $[^3H]PIP_2$, phospholipase C (PLC) activity was assessed by the production of $[^3H]$insitol phosphates. Protein kinase C (PKC) activity was assessed by measuring the protein phosphorylated from mast cells prelabeled with $[{\gamma}-32P]ATP$, and Phospholipase $A_2\;(PLA_2)$ activity by measuring the lyso-phosphatidylcholine produced from mast cell prelabeled with 1-palmitoyl-2-arachidonyl $phosphatidyl-[^{14}C]choline$. Histamine was assayed by fluorometric analyzer, and leukotrienes by radioimmunoassay. The PLC activity was increased by activation of the passively sensitized mast cells. This increased PLC activity was decreased by cromakalim pretreatment. The PKC activity increased by the activation of the passively sensitized mast cells was decreased by calphostin C, staurosporine and cromakalim, respectively. The $PLA_2$ activity was increased in the activated mast cells. The pretreatment of cromakalim did not significantly decrease $PLA_2$ activity. These data show that cromakalim inhibits histamine release by continuously inhibiting signal transduction processes which is mediated via PLC pathway during mast cell activation, but that cromakalim does not affect $PLA_2$ activity related to leukotriene release.

  • PDF

Regulatory Mechanisms of Angiotensin II on the $Na^+/H^+$ Antiport System in Rabbit Renal Proximal Tubule Cells. I. Stimulatory Effects of ANG II on $Na^+$ Uptake

  • Han, Ho-Jae;Koh, Hyun-Ju;Park, Soo-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.4
    • /
    • pp.413-423
    • /
    • 1997
  • The importance of the kidney in the development of hypertension was first demonstrated by Goldblatt and his colleagues more than fifty years ago. Many hormones and other regulatory factors have been proposed to play a major role in the development of hypertension. Among these factors angiotensia II (ANG II) is closely involved in renal hypertension development since it directly regulates $Na^+$ reabsorption in the renal proximal tubule. Thus the aim of the present study was to examine signaling pathways of low dose of ANC II on the $Na^+$ uptake of primary cultured rabbit renal proximal tubule cells (PTCs) in hormonally defined seum-free medium. The results were as follows: 1) $10^{-11}$ M ANG II has a significant stimulatory effect on growth as compared with control. Alkaline phosphatase exhibited significantly increased activity. However, leucine aminopeptidase and ${\gamma}-glutamyl$ transpeptidase activity were not significant as compared with control. In contrast to $10^{-11}$ M ANG II stimulated $Na^+$ uptake $(108.03{\pm}2.16% of that of control)$, $10^{-9}$ M ANG II inhibited ($92.42{\mu}2.23%$ of that of control). The stimulatory effect of ANG II on $Na^+$ uptake was amiloride-sensitive and inhibited by losartan (ANG II receptor subtype 1 antagonist) and not by PD123319 (ANG II receptor subtype 2 antagonist). 2) Pertussis toxin (PTX) alone inhibited $Na^+$ uptake by $85.52{\pm}3.52%$ of that of control. In addition, PTX pretreatment prevented the AMG II-induced stimulation of $Na^+$ uptake. 8-Bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP), forskolin, and isobutylmethylxanthine (IBMX) alone inhibited $Na^+$ uptake by $88.79{\pm}2.56,\;80.63{\pm}4.38,\;and\;84.47{\pm}4.74%$ of that of control, respectively, and prevented the ANG II-induced stimulation of $Na^+$ uptake. However, $10^{-11}$ M ANG II did not stimulate cAMP production. 3) The addition of 12-O-te-tradecanoylphorbol-13-acetate (TPA, 0.01 ng/ml) to the PTCs produced significant increase in $Na^+$ uptake ($114.43{\pm}4.05%$ of that of control). When ANG II and TPA were added together to the PTCs, there was no additive effect on $Na^+$ uptake. Staurosporine alone had no effect on $Na^+$ uptake, but led to a complete inhibition of ANG II- or TPA-induced stimulation of Na'uptake. ANG II treatment resulted in a $111.83{\mu}4.51%$ increase in total protein kinase C (PKC) activity. In conclusion, the PTX-sensitive PKC pathway is the main signaling cascade involved in the stimulatory effects of ANG II on $Na^+$ uptake in the PTCs.

  • PDF

Effect of Verapamil on Cellular Uptake of Tc-99m MIBI and Tetrofosmin on Several Cancer Cells (수종의 암세포에서 Verapamil이 Tc-99m MIBI와 Tetrofosmin의 섭취에 미치는 영향)

  • Kim, Dae-Hyun;Yoo, Jung-Ah;Suh, Myung-Rang;Bae, Jin-Ho;Jeong, Shin-Young;Ahn, Byeong-Cheol;Lee, Kyu-Bo;Lee, Jae-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.1
    • /
    • pp.85-98
    • /
    • 2004
  • Purpose: Cellular uptake of $^{99}mTc$-sestamibi (MIBI) and $^{99}mTc$-tetrofosmin (TF) is low in cancer cells expressing multidrug resistance(MDR) by p-glycoprotein(Pgp) or multidrug related protein(MRP). Verapamil is known to increase cellular uptake of MIBI in MDR cancer cells, but is recently reported to have different effects on tracer uptake in certain cancer cells. This study was prepared to evaluate effects of verapamil on cellular uptake of MIBI and TF in several cancer cells. Materials and Methods: Celluar uptakes of Tc-99m MIBI and TF were measured in erythroleukermia K562 cell, breast cancer MCF7 cell, and human ovarian cancer SK-OV-3 cells, and data were compared with those of doxorubicin-resistant K562(Ad) cells. RT-PCR and Western blot analysis were used for the detection of mdr1 mRNA and Pgp expression, and to observe changes in isotypes of PKC enzyme. Effects of verapamil on MIBI and TF uptake were evaluated at different concentrations upto $200{\mu}M\;at\;1{\times}10^6\;cells/ml\;at\;37^{\circ}C$. Radioactivity in supernatant and pellet was measured with gamma counter to calculate cellular uptake ratio. Toxicity of verapamil was measured with MTT assay. Results: Cellular uptakes of MIBI and TF were increased by time in four cancer cells studied. Co-incubation with verapamil resulted in an increase in uptake of MIBI and TF in K562(Adr) cell at a concentration of $100{\mu}M$ and the maximal increase at $50{\mu}M$ was 10-times to baseline. In contrast, uptakes of MIBI and TF in K562, MCF7, SK-OV3 cells were decreased with verapamil treatment at a concentration over $1{\mu}M$. With a concentration of $200{\mu}M$ verapamil, MIBI and TF uptakes un K562 cells were decreased to 1.5 % and 2.7% of those without verapamil, respectively. Cellular uptakes of MIBI and TF in MCF7 and SK-OV-3 cells were not changed with $10{\mu}M$, but were also decreased with verapamil higher than $10{\mu}M$, resulting 40% and 5% of baseline at $50{\mu}M$. MTT assay of four cells revealed that K562, MCF7, SK-OV3 were not damaged with verapamil at $200{\mu}M$. Conclusion: Although verapamil increases uptake of MIBI and TF in MDR cancer cells, cellular uptakes were further decreased with verapamil in certain cancer cells, which is not related to cytotoxicity of drug. These results suggest that cellular uptakes of both tracers might differ among different cells, and interpretation of changes in tracer uptake with verapamil in vitro should be different when different cell lines are used.

Calcium Sensitization Induced by Sodium Fluoride in Permeabilized Rat Mesenteric Arteries

  • Yang, En-Yue;Cho, Joon-Yong;Sohn, Uy-Dong;Kim, In-Kyeom
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.1
    • /
    • pp.51-57
    • /
    • 2010
  • It was hypothesized that NaF induces calcium sensitization in $Ca^{2+}$-controlled solution in permeabilized rat mesenteric arteries. Rat mesenteric arteries were permeabilized with $\beta$-escin and subjected to tension measurement. NaF potentiated the concentration-response curves to $Ca^{2+}$ (decreased $EC_{50}$ and increased $E_{max}$). Cumulative addition of NaF (4.0, 8.0 and 16 mM) also increased vascular tension in $Ca^{2+}$-controlled solution at pCa 7.0 or pCa 6.5, but not at pCa 8.0. NaF-induced vasocontraction and $GTP{\gamma}S$-induced vasocontraction were not additive. NaF-induced vasocontraction at pCa 7.0 was inhibited by pretreatment with Rho kinase inhibitors H1152 or Y27632 but not with a MLCK inhibitor ML-7 or a PKC inhibitor Ro31-8220. NaF induces calcium sensitization in a $Ca^{2+}$ dependent manner in $\beta$-escin-permeabilized rat mesenteric arteries. These results suggest that NaF is an activator of the Rho kinase signaling pathway during vascular contraction.

Prediction of Protein Kinase Specific Phosphorylation Sites with Multiple SVMs

  • Lee, Won-Chul;Kim, Dong-Sup
    • Bioinformatics and Biosystems
    • /
    • v.2 no.1
    • /
    • pp.28-32
    • /
    • 2007
  • The protein phosphorylation is one of the important processes in the cell signaling pathway. A variety of protein kinase families are involved in this process, and each kinase family phosphorylates different kinds of substrate proteins. Many methods to predict the kinase-specific phosphoryrated sites or different types of phosphorylated residues (Serine/Threonine or Tyrosin) have been developed. We employed Supprot Vector Machine (SVM) to attempt the prediction of protein kinase specific phosphorylation sites. 10 different kinds of protein kinase families (PKA, PKC, CK2, CDK, CaM-KII, PKB, MAPK, EGFR) were considered in this study. We defined 9 residues around a phosphorylated residue as a deterministic instance from which protein kinases determine whether they act on. The subsets of PSI-BALST profile was converted to the numerical vectors to represent positive or negative instances. When SVM training, We took advantage of multiple SVMs because of the unbalanced training sets. Representative negative instances were drawn multiple times, and generated new traing sets with the same positive instances in the original traing set. When testing, the final decisions were made by the votes of those multiple SVMs. Generally, RBF kernel was used for the SVMs, and several parameters such as gamma and cost factor were tested. Our approach achieved more than 90% specificity throughout the protein kinase families, while the sensitivities recorded 60% on average.

  • PDF

Cooperation of $G{\beta}$ and $G_{\alpha}q$ Protein in Contractile Response of Cat Lower Esophageal Sphincter (LES)

  • Sohn, Uy-Dong;Lee, Tai-Sang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.6
    • /
    • pp.349-355
    • /
    • 2003
  • We previously shown that LES contraction depends on $M_3$ receptors linked to PTX insensitive $G_q$ protein and activation of PLC. This results in production of $IP_3$, which mediates calcium release, and contraction through a CaM dependent pathway. In the esophagus ACh activates $M_2$ receptors linked to PTX sensitive $G_{i3}$ protein, resulting in activation of PLD, presumably, production of DAG. We investigated the role of PLC isozymes which can be activated by $G_q$ or $G{\beta}$ protein on ACh-induced contraction in LES and esophagus. Immunoblot analysis showed the presence of 3 types of PLC isozymes, $PLC-{\beta}1$, $PLC-{\beta}3$, and $PLC-{\gamma}1$, but not $PLC-{\beta}2$, $PLC-{\beta}4$, $PLC-{\gamma}2$, $PLC-{\delta}1$, and $PLC-{\delta}2$ from both LES and esophageal muscle. ACh produced contraction in a dose dependent manner in LES and esophageal muscle cells obtained by enzymatic digestion with collagenase. $PLC-{\beta}1$ or $PLC-{\beta}3$ antibody incubation reduced contraction in response to ACh in LES but not in esophageal permeabilized cells, but $PLC-{\gamma}1$ antibody incubation did not have an inhibitory effect. The inhibition by $PLC-{\beta}1$ or $PLC-{\beta}3$ antibody on Ach-induced contraction was antibody concentration dependent. The combination with $PLC-{\beta}_1$ and $PLC-{\beta}_3$ antibody completely abolished the contraction, suggesting that $PLC-{\beta}1$ and $PLC-{\beta}3$ have a synergism to inhibit the contraction in LES. $PLC-{\beta}1$, -${\beta}3$ or -${\gamma}1$ antibody did not reduce the contraction of LES cells in response to DAG ($10^{-6}$ M), suggesting that this isozyme of PLC may not activate PKC. When $G_{q/11}$ antibody was incubated, the inhibitory effect of the incubation of PLC ${\beta}3$, but not of PLC ${\beta}_1$ was additive (Fig. 6). In contrast, when $G_{\beta}$ antibody was incubated, the inhibitory effect of the incubation of PLC ${\beta}_1$, but not of PLC ${\beta}_3$ was additive. This data suggest that $G_{q/11}$/11 or $G{\beta}$ may activate cooperatively different PLC isozyme, $PLC{\beta}_1$ or $PLC{\beta}_3$ respectively.

Expression of Phospholipase C Isozymes in Human Lung Cancer Tissues (인체 폐암조직에서 Phospholipase C 동위효소의 발현양상)

  • Hwang, Sung-Chul;Mah, Kyung-Ae;Choi, So-Yeon;Oh, Yoon-Jung;Choi, Young-In;Kim, Deog-Ki;Lee, Hyung-Noh;Choi, Young-Hwa;Park, Kwang-Ju;Lee, Yi-Hyeong;Lee, Kyi-Beom;Ha, Mahn-Joon;Bae, Yoon-Su
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.3
    • /
    • pp.310-322
    • /
    • 2000
  • Background : Phospholipase C(PLC) plays an important role in cellular signal transduction and is thought to be critical in cellular growth, differentiation and transformation of certain malignancies. Two second messengers produced from the enzymatic action of PLC are diacylglycerol (DAG) and inositol 1, 4, 5-trisphosphate (IP3). These two second messengers are important in down stream signal activation of protein kinase C and intracellular calcium elevation. In addition, functional domains of the PLC isozymes, such as Src homology 2 (SH2) domain, Src homology 3 (SH3) domain, and pleckstrin homology (PH) domain play crucial roles in protein translocation, lipid membrane modificailon and intracellular memrane trafficking which occur during various mitogenic processes. We have previously reported the presence of PLC-${\gamma}1$, ${\gamma}2$, ${\beta}1$, ${\beta}3$, and ${\delta}1$ isozymes in normal human lung tissue and tyrosine-kinase-independent activation of phospholipase C-${\gamma}$ isozymes by tau protein and AHNAK. We had also found that the expression of AHNAK protein was markedly increased in various mstologic types of lung can∞r tissues as compared to the normallungs. However, the report concerning expression of various PLC isozymes in lung canærs and other lung diseases is lacking. Therefore, in this study we examined the expression of PLC isozymes in the paired surgical specimens taken from lung cancer patients. Methods : Surgically resected lung cancer tissue samples taken from thirty seven patients and their paired normal control lungs from the same patients, The expression of various PLC isozymes were studied. Western blot analysis of the tissue extracts for the PLC isozymes and immunohistochemistry was performed on typical samples for localization of the isozyme. Results : In 16 of 18 squamous cell carcinomas, the expression of PLC-${\gamma}1$ was increased. PLC-${\gamma}1$ was also found to be increased in all of 15 adenocarcinoma patients. In most of the non-small cell lung cancer tissues we had examined, expression of PLC-${\delta}1$ was decreased. However, the expression of PLC-${\delta}1$ was markedly increased in 3 adenocarcinomas and 3 squamous carcinomas. Although the numbers were small, in all 4 cases of small cell lung cancer tissues, the expression of PLC-${\delta}1$ was nearly absent. Conclusion : We found increased expression of PLC-${\gamma}1$ isozyme in lung cancer tissues. Results of this study, taken together with our earlier findings of AHNAK protein-a putative PLD-${\gamma}$, activator-over-expression, and the changes observed in PLC-${\delta}1$ in primary human lung cancers may provide a possible insight into the derranged calcium-inositol signaling pathways leading to the lung malignancies.

  • PDF

The Signal Transduciton of Ginsenosides, Active Ingredients of Panax ginseng, in Xenopus oocyte: A Model System for Ginseng Study

  • Nah Seung-Yeol;Lee Sang-Mok
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.66-83
    • /
    • 2002
  • Recently, we have provided evidence that ginsenosides, the active components of Panax ginseng, utilize pertussis toxin (PTX)-insensitive $G{\alpha}_{q/11}-phospholipase\;C-{\beta}3(PLC-{\beta}3)$ signal transduction pathway for the enhancement of $Ca^{2+}-activated\;Cl^{-}$ current in the Xenopus oocyte (British J. Pharmacol. 132, 641-647, 2001; JBC 276, 48797-48802, 2001). Other investigators have shown that stimulation of receptors linked to $G{\alpha}-PLC$ pathway inhibits the activity of G proteincoupled inwardly rectifying $K^+$ (GIRK) channel. In the present study, we sought to determine whether ginsenosides influenced the activity of GIRK 1 and GIRK 4 (GIRK 1/4) channels expressed in the Xenopus oocyte, and if so, the underlying signal transduction mechanism. In oocyte injected with GIRK 1/4 channel cRNAs, bath-applied ginsenosides inhibited high potassium (HK) solution-elicited GIRK current $(EC_{50}:4.9{\pm}4.3\;{\mu}g/ml).$ Pretreatment of the oocyte with PTX reduced the HK solution-elicited GIRK current by $49\%,$ but it did not alter the inhibitory ginsenoside effect on GIRK current. Prior intraoocyte injection of cRNA(s) coding $G{\alpha}_q,\;G{\alpha}_{11}\;or\;G{\alpha}_q/G{\alpha}_{11},\;but\;not\;G{\alpha}_{i2}\;or\;G{\alpha}_{oA}$ attenuated the inhibitory ginsenoside effect. Injection of cRNAs coding $G{\beta}_{1{\gamma}2}$ also attenuated the ginsenoside effect. Similarly, injection of the cRNAs coding regulators of G protein signaling 1, 2 and 4 (RGS1, RGS2 and RGS4), which interact with $G{\alpha}_i\;and/or\;G{\alpha}_{q/11}$ and stimulates the hydrolysis of GTP to GDP in active GTP-bound $G{\alpha}$ subunit, resulted in a significant reduction of ginsenoside effect on GIRK current. Preincubation of GIRK channel-expressing oocyte in PLC inhibitor (U73122) or protein kinase C (PKC) inhibitor (staurosporine or chelerythrine) blocked the inhibitory ginsenoside effect on GIRK current. On the other hand, intraoocyte injection of BAPTA, a free $Ca^{2+}$ chelator, had no significant effect on the ginsenoside action. Taken together, these results suggest that ginsenosides inhibit the activity of GIRK 1/4 channel expressed in the Xenopus oocyte through a PTX-insensitive and $G{\alpha}_{q/11}$-,PLC-and PKC-mediated signal transduction pathway.

  • PDF