• Title/Summary/Keyword: PKC${\alpha}$

검색결과 125건 처리시간 0.03초

허혈성 전처치와 당원 결핍과의 관계 (Ischemic Preconditioning and Its Relation to Glycogen Depletion)

  • 장대영;김대중;원경준;조대윤;손동섭;양기민;라봉진;김호덕
    • Journal of Chest Surgery
    • /
    • 제33권7호
    • /
    • pp.531-540
    • /
    • 2000
  • 연구배경; 심근세포내 에너지원인 단원 pool의 고갈이나 당대사의증가와 이로 인한 유산의 심근세포내 축적은 허혈 심근세포 손상의 중요한 원인으로 알려져 있다. 그러나 역설적으로 당원이 결핍된 용액으로 짧은 기간 동안 허혈-재관류를 반복(IP)한 경우와 유사한 결과를 가져올 수 있는 가능성을 조사하여 세포내 신호전달체계 중 PKC와의 관련성을 알아보고자 하였다. 대상 및 방법 ; Langendorff방법에 따라 관류하여 기준설 혈역학 값이 유지되면 전체허혈(5분)-재관류(10분) 1회 실시로 IP를 유도하고 45분 동안 전체 허혈후 120분 동안 재관류하였다. (IP군. n=13). 허혈 대조군(n=10)에서는 IPdjqt이 45분 동안 전체 허혈후 120 동안 재관류를 실시하였다. Glucose 결핍용액 투여 전처치군(n=12)에서는 기준선 혈역학 값이 유지되면 5분 동안 glucose를 포함하지 않은 관류액으로 관류한 후 10분 동안 표준 관류액으로 측정하였으며 실험 종료후 PKC활성도는 PKC-specific peptide와 32P-${\gamma}$-ATP incorporation으로 PKC활성도(nmol/g tissue)를 측정하였따. PKC 동종효소의 발현정도는 단클론항체($\alpha$,$\beta$,$\delta$,$\varepsilon$,ζ 등)를 사용하여 Western blot로 확인하였다. 심근경색 크기는 1% tetrazolium chloride로 염색하여 형태 계측하였다. 결과; 45분 동안 허혈LVDP(LV developed pressure), dP/dt 등은 다른 실험군에 비하여 IPrns에서 현저히 증가하였으나 glucose 결핍용액 투여 전처치군에서는 허혈 대조군과 큰 차이가 없었으며 관혈류량은 모든 실험군 사이에서 차이를 나타내지 않았다. 그러나 glucose 결핍용액 트여 저너치군(15$\pm$3.9%)과 IP군(19$\pm$1.2%)에서는 허혈 대조군(39$\pm$2.7%)에 비하여 심근경색 범위의 현저한 감소를 볼 수 있었다. (p<0.05). PKC 활성도는 기준선과 비교하여 허혈 대조군에서는 87% 정도를 감소하였으며 (p<0.05), IP 실시한 후와 IP후 45분 동안 허혈을 실시한 결우에는 각각 119, 145%로 현저히 증가하였다. (p<0.01). PKC 동종효소중 $\beta$, $\delta$, ζ 등에서는 발현정도에 유의한 변화가 없었던 반면 $\alpha$$\varepsilon$에서 양적인 변화를 관찰할 수 있었다. PKC-$\alpha$의 세포질분획의 발현은 기준선이나허혈 대조군과 비교하여 IPgn에 증가하는 경향을 나타내었으나, 이외의실험군에서는 큰 변화를 볼 수 없었다. PKC-$\alpha$의 세포막분획은 IP후롸, glucose 결핍용액 투여 전처치후, glucose 결핍용액 투여 전치치후 45분 동안 허혈후에 증가하는 경향을 나타내었다. PKC-$\varepsilon$의 세포질분획의 발현은 기준선이나 허혈 대조군과 비교하여 IPgn나 IPgn 45분 동안 허혈후, glucose 결핍용액 투여 전처치에 증가하는 경향을 나타내었으며 PKC-$\varepsilon$의 세포막분획은 IP후 45분 동안 허혈후, 또는 glucose 결핍용액 투여 전처치후에 발현이 증가하는 경향을 나타내었다. 결론 ; 이상으로 적출 관류 토끼 심장에서 glucose 결핍용액 투여로 전처치할 경우 후속된 장시간 동안의 허혈에 대하여 좌심실기능 회복 증가는 기대할 수 없으나 심근경색 범위가 감소되거나 한정되는 보호효과가 있음을 알 수 있었다.

  • PDF

Modulation of $GABA_A$ Receptor by Protein Kinase C in Autonomic Major Pelvic Ganglion Neurons

  • ;;;공인덕
    • 대한의생명과학회지
    • /
    • 제14권2호
    • /
    • pp.69-76
    • /
    • 2008
  • ${\gamma}$-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system, and its actions are mediated by subtypes of GABA receptors named as $GABA_A$, $GABA_B,\;and\;GABA_C,\;GABA_A$, receptor consisting of ${\alpha},\;{\beta},\;{\gamma}\;and\;{\delta}$ subunits is a heterooligomeric ligand-gated chloride channel. This study was performed to investigate regulation of $GABA_A$ receptor by protein kinase C(PKC). Ion currents were recorded using gramicidine-perforated patch and whole cell patch clamp. mRNA encoding the subunits of PKC expressed in major pelvic ganglion (MPG) neurons was detected by using RT-PCR. The GABA-induced inward current was increased by PKC activators and decreased by PKC inhibitors, respectively. These effects were not associated with intracellular $Ca^{2+}$ and GAG (1-oleoyl-2-acetyl-sn-glycerol), a membrane permeable diacylglycerol (DAG) analogue. These results mean that the subfamily of PKC participating in activation of $GABA_A$ receptor would be an atypical PKC (aPKC). Among theses, ${\xi}$ isoform of aPKC was detected by RT-PCR. Taking together, we suggest that excitable $GABA_A$ receptor in sympathetic MPG neuron seemed to be regulated by aPKC, particular in ${\xi}$ isoform. The regulatory roles of PKC on excitatory $GABA_A$ receptors in sympathetic neurons of MPG may be an important factor to control the functional activity of various pelvic organs such as bowel movement, micturition and erection.

  • PDF

Dimethyl Cardamonin Exhibits Anti-inflammatory Effects via Interfering with the PI3K-PDK1-PKCα Signaling Pathway

  • Yu, Wan-Guo;He, Hao;Yao, Jing-Yun;Zhu, Yi-Xiang;Lu, Yan-Hua
    • Biomolecules & Therapeutics
    • /
    • 제23권6호
    • /
    • pp.549-556
    • /
    • 2015
  • Consumption of herbal tea [flower buds of Cleistocalyx operculatus (Roxb.) Merr. et Perry (Myrtaceae)] is associated with health beneficial effects against multiple diseases including diabetes, asthma, and inflammatory bowel disease. Emerging evidences have reported that High mobility group box 1 (HMGB1) is considered as a key "late" proinflammatory factor by its unique secretion pattern in aforementioned diseases. Dimethyl cardamonin (2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone, DMC) is a major ingredient of C. operculatus flower buds. In this study, the anti-inflammatory effects of DMC and its underlying molecular mechanisms were investigated on lipopolysaccharide (LPS)-induced macrophages. DMC notably suppressed the mRNA expressions of TNF-${\alpha}$, IL-$1{\beta}$, IL-6, and HMGB1, and also markedly decreased their productions in a time- and dose-dependent manner. Intriguingly, DMC could notably reduce LPS-stimulated HMGB1 secretion and its nucleo-cytoplasmic translocation. Furthermore, DMC dose-dependently inhibited the activation of phosphatidylinositol 3-kinase (PI3K), phosphoinositide-dependent kinase 1 (PDK1), and protein kinase C alpha (PKC${\alpha}$). All these data demonstrated that DMC had anti-inflammatory effects through reducing both early (TNF-${\alpha}$, IL-$1{\beta}$, and IL-6) and late (HMGB1) cytokines expressions via interfering with the PI3K-PDK1-PKC${\alpha}$ signaling pathway.

Effects of Butanol Fraction of Crataegi Fructus on the Translocation of PKC $\alpha$ and Myosin Phosphatase Subnits in Vascular Smooth Muscle

  • Lee Heon Jae;Choi Ho Jeong;Kim Gil Whon;Shin Heung Mook
    • 동의생리병리학회지
    • /
    • 제16권5호
    • /
    • pp.1060-1065
    • /
    • 2002
  • LC20 phosphorylation and PKC α play an important role in modulation of contractile activity of smooth muscle. Besides, myosin phosphatase is also related with smooth muscle contraction in signaling pathways. We previously demonstrated that Crataegi Fructus inhibited phenylephrine-induced contraction and which might be implicated in nitrite formation(Son et al., 2002). In this study, we investigated the effects of butanol fraction of Crataegi Fructus(BFFC) on the localization of α-protein kinease C(PKC α) and myosin phosphatase subnits(MPs) in freshly isolated single ferret potal vein cells, and phosphorylation of LC20 during phenylephrine stimulation. In PKC α and MPs localization, BFFC blocked its translocation from the cytosol to the cell membrane by treatment of phenylephrine. BFFC have also dephosphorylated LC20 phosphorylation by phenylephrine stimulation under basal level, but no significant. These results indicate that the relaxation effect of BFFC is associated with inhibition of PKC α activation and MPs dissociation, and thus myosin phosphatase activity may be increased.

Phosphatidic acid에 의한 intercellular adhesion molecule-1 발현 조절에 관여한 MAPK와 PKC-${\delta}$의 역할 (THE ROLE OF MAPK AND PKC-${\delta}$ IN PHOSPHATIDIC ACID-MEDIATED INTERCELLULAR ADHESION MOLECULE-1 EXPRESSION)

  • 조우성;윤홍식;진병로;백석환
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제33권5호
    • /
    • pp.445-454
    • /
    • 2007
  • Background: Phosphatidic acid(PA), an important second messenger, is involved in inflammation. Notably, cell-cell interactions via adhesion molecules playa central role in inflammation. This thesis show that PA induces expression of intercellular adhesion molecule-1(ICAM-1) on macrophages and describe the signaling pathways. Materials and methods: Macrophages were cultured in the presence of 10% FBS and assayed cell to cell adhesion using HUVEC. For the gene and protein analysis, RT-PCR, Western blot and flow cytometry were performed. In addition, overexpressed cell lines for dominant negative PKC-${\delta}$ mutant established and tested their effect on the promoter activity and expression of ICAM-1 protein by PA. Results: PA-activated macrophages significantly increased adhering to human umbilical vein endothelial cell and this adhesion was mediated by ICAM-1. Pretreatment with rottlerin(PKC-${\delta}$ inhibitor) or expression of a dominant negative PKC-${\delta}$ mutant, but not Go6976(classical PKC-${\alpha}$ inhibitor) and myristoylated PKC-${\xi}$ inhibitor, attenuated PA-induced ICAM-1 expression. The p38 mitogen-activated protein kinase(MAPK) inhibitor blocked PA-induced ICAM-1 expression in contrast, ERK upstream inhibitor didn't block ICAM-1. Conclusion: These data suggest that PA-induced ICAM-1 expression and cell-cell adhesion in macrophages requires PKC-${\delta}$ activation and that PKC-${\delta}$ activation is triggers to sequential activation of p38 MAPK.

말 서골코기관에서 protein kinase C 및 nitric oxide synthase의 면역조직학적 관찰 (Immunohistochemical localization of protein kinase C and nitric oxide synthase in the vomeronasal organ of the horse)

  • 이광협;안미정;이용덕;하태영;김희석;신태균
    • 대한수의학회지
    • /
    • 제41권3호
    • /
    • pp.269-273
    • /
    • 2001
  • The expression of protein kinase C(PKC) isoforms and nitric oxide synthase (NOs) isoforms was studied in the equine vomeronasal organ(VNO), a pheromone receptor organ, using immunohistochemistry. All PKC isoforms including PKC $\alpha$, ${\beta}I$, $\delta$, and $\theta$ were detected in the supporting cells, sensory receptor cells, and basal sensory epithelial cells, while constitutive PKC $\alpha$ and ${\beta}I$ were stained more intensely than novel PKC $\delta$ and ${\theta}$. There was also a varying degree of immunostaining for PKCs in the glandular acini and VNO nerve. Constitutive neuronal and endothelial NOSs, and inducible NOS were detected in the VNO sensory epithelia. There was intense immunoreactivity for endothelial NOS in the VNO sensory epithelia but weak reactivity for neuronal NOS, while inducible NOS showed little immunoreactivity in the adjacent section. These findings suggest that both PKCs and NOSs may be involved in the process of pheromone reception in the horse. Constitutive isoforms of these enzymes may play a more important role in signal trasduction in the VNO of the horse.

  • PDF

관류 기니픽 심장에서 Mg2+ 유리에 미치는 α1-adrenoceptor 자극효과 (Effects of α1-adrenoceptor stimulation on Mg2+ release in perfused guinea pig heart)

  • 황성철;김상진;강형섭;이승옥;강창원;권오덕;김진상
    • 대한수의학회지
    • /
    • 제36권2호
    • /
    • pp.327-335
    • /
    • 1996
  • Recently in spite of the interest on the regulation of intracellular $Mg^{2+}$ by neurotransmitters or drugs, the magnesium ion($Mg^{2+}$) regulation by ${\alpha}_1$-adrenoceptor stimulation has not been studied in the heart yet. To elucidate the regulation of ${\alpha}_1$-adrenoceptor stimulation-induced $Mg^{2+}$ release and the effects of ${\alpha}_1$-adrenoceptor stimulation on pathophysiological conditions, in this study we have evaluated the effects of phenylephrine, PMA, $H_7$. staurosporine, verapamil and lidocaine on $Mg^{2+}$ release in perfused guinea pig heart. During preperfusion exogenous $Mg^{2+}$ was added to the medium to give 1.2mM 15min before starting to addition of drugs, and then the infusion of exogenous $Mg^{2+}$ was stopped. $Mg^{2+}$ in the perfusate leaving the heart was measured by atomic absorption spectrophotometry. $Mg^{2+}$ free solution produced an increase in heart rate and phenylephrine elicited $Mg^{2+}$ release from the heart. $Mg^{2+}$ release by phenylephrine was abolished by combined treatment with prazosin. By contrast, cardiac $Mg^{2+}$ uptake induced by a protein kinase C(PKC) activator, PMA was abolished by a selective PKC inhibitor, staurosporine. And the phenylephrine-induced $Mg^{2+}$ release was not affected by the PKC inhibitor, $H_7$. When verapamil or lidocaine was added to perfusing solution, $Mg^{2+}$ release was potentiated by phenylephrine from perfused guinea pig heart. These results suggest that ${\alpha}_1$-adrenoceptor stimulation caused $Mg^{2+}$ release and that PKC is not involved in ${\alpha}_1$-adrenoceptor mediated $Mg^{2+}$ release from perfused guinea pig heart. Under pathophysiological conditions, the $Mg^{2+}$ alteration by ${\alpha}_1$-adrenoceptor stimulation is considerable.

  • PDF

기니픽 심장과 심근세포에서 Phenylephrine에 의한 PKC 활성화가 Mg2+ 유리에 미치는 영향 (Effects of phenylephrine-induced PKC activation on Mg2+ release in guinea pig heart and isolated ventricular myocytes)

  • 장성은;강형섭;김진상
    • 대한수의학회지
    • /
    • 제38권1호
    • /
    • pp.29-42
    • /
    • 1998
  • $Mg^{2+}$ is one of the most abundant divalent cations in mammalian body(0.2~1.0mM) and the important physiological roles are : first, the cofactor of many enzyme activities, second, the regulator of glycolysis and DNA synthesis, third, the important role of bioenergetics by regulating of phosphorylation, fourth, the influence of cardiac metabolism and function. In this work we have investigated the regulation of the $Mg^{2+}$ induced by ${\alpha}_1-adrenoceptor$ stimulation in perfused guinea pig hearts and isolated myocytes. The $Mg^{2+}$ content of the perfusate or the supernatant was measured by atomic absorbance spectrophotometry. The elimination of $Mg^{2+}$ in the medium increased the force of contraction of right ventricular papillary muscles, and the left ventricular pressure. Phenylephrine also enhanced the force of contraction in the presence of $Mg^{2+}-free$ medium. ${\alpha}_1-Agonists$ such as phenylephrine and methoxamine were found to induce $Mg^{2+}$ efflux in both perfused hearts and myocytes. These effects were blocked by prazosin, an ${\alpha}_1-adrenoceptor$ antagonist. The $Mg^{2+}$ influx could also be induced by phenylephrine and R59022, a diacylglycerol kinase inhibitor. In the presence of protein kinase C(PKC) inhibitors, phenylephrine produced an increase in $Mg^{2+}$ efflux from perfused hearts. Furthermore, $Mg^{2+}$ efflux by phenylephrine was amplified by phorbol 12-myristate 13-acetate(PMA). This enhancement of $Mg^{2+}$ efflux by PMA was blocked by prazosin in perfused hearts. By contrast, the $Mg^{2+}$ influx could be induced by verapamil, nifedipine, ryanodine in perfused hearts, but not in myocytes. $W^7$, a $Ca^{2+}$/calmodulin antagonist, completely blocked the phenylephrine-induced $Mg^{2+}$ efflux in perfused hearts. In conclusion, $Mg^{2+}$ is responsible for the cardiac activity associated with ${\alpha}_1-adrenoceptor$ stimulation. The mobilization of $Mg^{2+}$ is decreased or increased by ${\alpha}_1-adrenoceptor$ stimulation in guinea pig hearts. These responses may be related specifically to the respective pathways of signal transduction. A decrease in $Mg^{2+}$ efflux by ${\alpha}_1-adrenoceptor$ stimulation in hearts can be through PKC dependent and intracellular $Ca^{2+}$ levels.

  • PDF

감송향(甘松香) 물추출물이 U937 백혈병 세포의 분화유도에 미치는 영향 (Effect of Nardostachys chinensis on Induction of Differentiation in U937 Monomyelocytic Cells)

  • 김진국;주성민;전병제;양현모;전병훈
    • 동의생리병리학회지
    • /
    • 제25권1호
    • /
    • pp.29-36
    • /
    • 2011
  • Nardostachyts chinensis (N. chinensis) belonging to the family Valerianaceae has been used to elicit stomachic and sedative effects. The MAPKs are serine/threonine kinases involved in the regulation of various cellular responses, such as cell proliferation, differentiation and apoptosis. The PKC also plays a key role in regulating the response of hematopoietic cells to both physiological and pathological inducers of proliferation and differentiation. This study investigated the signaling pathways on the U937 cell differentiation induced by N. chinensis. N. chinensis induced the differentiation of U937 cells, as shown by increased of differentiation surface antigen CD11b. Activation of ERK increased time-dependently in differentiation of U937 cells induced by N. chinensis, but activations of JNK and p38 were unaffected. Inhibitor of ERK (PD98059) significantly reduced CD11b expression induced by N. chinensis in U937 cells. In addition, N. chinensis increased protein level of PKC ${\beta}$I and PKC ${\beta}$II isoforms, but the protein level of PKC ${\alpha}$ and PKC ${\gamma}$was constant. PKC inhibitors (GF 109203X and H-7) inhibited U937 cell differentiation and the ERK activation induced by N. chinensis. These results indicated that PKC and ERK may be involved in U937 cell differentiation induced by N. chinensis.

혈관평활근세포에서 Phorbol 12-Myristate 13-Acetate의 전처리가 Interleukin-1β에 의한 Nitrite생성에 미치는 영향 (Inhibitory Effect of Phorbol 12-Myristate 13-Acetate on NO Production Induced by Interleukin-1 beta in Aortic Vascular Smooth Muscle Cells of Rats)

  • 윤병헌;김인겸;박태규;김중영
    • 생명과학회지
    • /
    • 제13권4호
    • /
    • pp.441-447
    • /
    • 2003
  • Protein kinase C (PKC)가 interleukin-1 beta (IL-1$\beta$)에 의하여 산화질소(NO) 생성과정에 어떤 역할을 하는지를 검토하기 위하여, 혈관평활근세포에서 PKC 활성제인 phorbol 12-myristate 13-acetate (PMA)로 전처리한 후 IL-1$\beta$에 의하여 야기되는 NO생성을 nitrite ($NO_2$)로 정량하고, RT-PCR method를 이용하여 iNOS 발현에 미치는 영향을 검토하여 다음과 같은 결과를 얻었다. PMA (20, 200 nM)는 IL-1$\beta$에 의한$NO_2$ 생성을 유의하게 증가시켰다. PMA 200 nM, phorbol 12,13-dibutyrate 500 nM로 전처리하여 8, 24시간 노출된 세포에서 IL-1$\beta$에 의한 NO2생성이 현저히 감소되었으나, PKC 비활성제인 4$\alpha$-phorbol-didecanoate 200 nM로 전처리한 경우는 영향을 받지 아니하였다. PMA 농도를 달리하여 24시간 전처리한 경우 IL-1$\beta$에 의한 $NO_2$ 생성의 감소는 PMA의 농도가 20및 200 nM에서 현저하였다. RT-PCR method를 이용하여 iNOS 발현을 검토한바 IL-1$\beta$ 100U/ml에 의한 iNOS발현이 PMA전처리 및 cycloheximide 또는 actinomycin D존재로서 현저히 억제 되었다. 이상의 결과로 미루어 혈관평활근세포에서 PMA 전처리로 야기되는 IL-1$\beta$에 의한 NO 생성의 감소는, PKC 조절저하작용에 의한 iNOS 발현의 억제로 야기되는 것 같다.