• Title/Summary/Keyword: PKA

Search Result 180, Processing Time 0.026 seconds

Effects of Kangwhal-Sokdantang Extract on Osteoblast Function (강활속단탕(羌活續斷湯)이 골세포(骨細胞) 기능(機能)에 미치는 영향(影響))

  • Lee Taek-Jun;Hong Ji-Woo;Choi Hyun-Ju;Gil In-Ho;Jeong Sun-Chung;Hwang Gui-Seo;Lee Ki-Nam
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.8 no.2
    • /
    • pp.13-30
    • /
    • 2004
  • This study was performed to evaluate the effect of Kangwhal-Sokdan tang(KS) on osteoblast function and gene expression. The osteoblast separated from the murine calvariae and MG-63 cell were cultivated to evaluate the cell function and gene expression. The results were summarized as followes. 1) KS increased cell proliferation of murine calvarial cell. 2) KS increased protein synthesis, collagen synthesis and ALP activity of murine calvarial cell. 3) KS increased the survival rate of murine calvarial cell. 4) KS increased the expression of calcitonin receptor and PTH receptor. 5) KS increased the expression of PKA and PKC. 6) KS decreased the expression of $PLA_2$, COX, $PGE_2$ synthase, but increased prostacyclin synthase. 7) KS increased the expression of collagen(type IV) gene. It is concluded that KS might improve the osteoporosis resulted from augumentation of osteoblast proliferation and gene expression.

  • PDF

Pharmacology of enantiomers of higenamine and related tetrahydroisoquinolines

  • Park, Min-Kyu;Huh, Ja-Myung;Lee, Young-Soo;Kang, Young-Jin;Seo, Han-Geuk;Lee, Jae-Heun;Park, Hye-Sook-Yun-;Lee, Duck-Hyung;Chang, Ki-Churl
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2004.04a
    • /
    • pp.3-10
    • /
    • 2004
  • Oxidative stress is a constant threat to all living organisms and an immense repertoire of cellular defense systems is being employed by most pro- and eukaryotic systems to eliminate or to attenuate oxidative stress. Ischemia and reperfusion is characterized by both a significant oxidative stress and characteristic changes in the antioxidant defense. Heme oxigenase-l (HO-l) is up-regulated by various stimuli including oxidative stress so that it is thought to participate in general cellular defense mechanisms against ischemic injury in mammalian cells. Higenamine, an active ingredient of Aconite tuber, has been shown to have antioxidant activity along with inhibitory action of inducible nitric oxide synthase (iNOS) expression in various cells. In the present study, we investigated whether higenamine and related analogs protect cells from oxidative cellular injuries by modulating antioxidant enzymes, such as HO-l, MnSOD etc. R-form of YS-51 was the most potent inducer of HO-l in bovine endothelial cells, which inhibited apoptotic cell death by H$_2$O$_2$. HO-1 induction by YS 51 was mediated by PI3 kinase activation in which PKA- as well as PKG pathway is considered as important regulators. YS-51 also induced Mn-SOD mRNA expression by activating c-jun N-terminal kinase in endothelial cells and Hela cells. In ROS 17/2.1 cells, higenamine and enetiomers of related compounds inhibited iNOS expression by cytokine mixtures. Taken together, higenamine and related compounds can be developed as possible protective agents from oxidative cell injury or death.

  • PDF

Gonadotropin-releasing Hormone and Its Receptor as a Therapeutic Concept in the Progression of Epithelial Ovarian Cancer

  • Kim, Ki-Yon;Choi, Kyung-Chul
    • Journal of Embryo Transfer
    • /
    • v.24 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • Ovarian cancer is a significant cause of cancer-related death in women, but the main biological causes remain open questions. Hormonal factors have been considered to be an important determinant causing ovarian cancer. Recent studies have shown that gonadotropin-releasing hormone (GnRH)-I and its analogs have clinically therapeutic value in the treatment of ovarian cancer. In addition, numerous studies have shown that the potential of GnRH-II in normal reproductive system or reproductive disorder. GnRH-I receptors have been detected in approximately 80% of ovarian cancer biopsy specimens as well as normal ovarian epithelial cells and immortalized ovarian surface epithelium cells. GnRH-II receptors have also been found to be more widely expressed than GnRH-I receptors in mammals, suggesting that GnRH receptors may have additional functions in reproductive system including ovarian cancer. The signal transduction pathway following the binding of GnRH to GnRH receptor has been extensively studied. The activation of protein kinase A/C (PKA/PKC) pathway is involved in the GnRH-I induced anti-proliferative effect in ovarian cancer cells. In addition, GnRH-I induced mitogen-activated protein kinase (MAPK) activation plays a role in anti-proliferative effect and apoptosis in ovarian cancer cells and the activation of transcriptional factors related to cellular responses. However, the role of GnRH-I and II receptors, there are discrepancies between previous reports. In this review, the role of GnRH in ovarian cancer and the mechanisms to induce anti-proliferation were evaluated.

Cancer Chemoprevention by Tea Polyphenols Through Modulating Signal Transduction Pathways

  • Lin, Jen-Kun
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.561-571
    • /
    • 2002
  • The action mechanisms of several chemopreventive agents derived from herbal medicine and edible plants have become attractive issues in cancer research. Tea is the most widely consumed beverage worldwide. Recently, the cancer chemopreventive actions of tea have been intensively investigated. It have been demonstrated that the active principles of tea were attributed to their tea polyphenols. Recently, tremendous progress has been made in elucidating the molecular mechanisms of cancer chemoprevention by tea and tea polyphenols. The suppression of various tumor biomarkers including growth factor receptor tyrosine kinases, cytokine receptor kinases, P13K, phosphatases, ras, raf, MAPK cascades, NㆍFB, IㆍB kinase, PKA, PKB, PKC, c-jun, c-fos, c-myc, cdks, cyclins, and related transducing proteins by tea polyphenols has been studied in our laboratory and others. The IㆍB kinase (IKK) activity in LPS-activated murine macrophages (RAW 264.7 cells) was found to be inhibited by various tea polyphenols including (-) epigallocatechin-3-gallate (EGCG), theaflavin (TF-1), theaflavin-3-gal-late (TF-2) and theaflavin-3,3'-digallate (TF-3). TF-3 inhibited IKK activity in activated macrophages more strongly than did the other tea polyphenols. TF-3 inhibited both IKK1 and IKK2 activity and prevented the degradation of IㆍBㆍand IㆍBㆍin activated macrophage cells. The results suggested that the inhibition of IKK activity by TF-3 and other tea polyphenols could occur by a direct effect on IKKs or on upstream events in the signal transduction pathway. TF-3 and other tea polyphenols blocked phosphorylation of IB from the cytosolic fraction, inhibited NFB activity and inhibited increases in inducible nitric oxide synthase levels in activated macrophage. TF-3 and other tea polyphenols also inhibited strongly the activities of xanthine oxidase, cyclooxygenase, EGF-receptor tyrosine kinase and protein kinase C. These results suggest that TF-3 and other tea polyphenols may exert their cancer chemoprevention through suppressing tumor promotion and inflammation by blocking signal transduction. The mechanisms of this inhibition may be due to the blockade of the mitogenic and differentiating signals through modulating EGFR function, MAPK cascades, NFkB activation as wll as c-myc, c-jun and c-fos expression.

Peripheral Cellular Mechanisms of Artemin-induced Thermal Hyperalgesia in Rats

  • Kim, Hye-Jin;Yang, Kui-Ye;Lee, Min-Kyung;Park, Min-Kyoung;Son, Jo-Young;Ju, Jin-Sook;Ahn, Dong-Kuk
    • International Journal of Oral Biology
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • In the present study, we investigated the role of peripheral ionotropic receptors in artemin-induced thermal hyperalgesia in the orofacial area. Male Sprague-Dawley rats weighting 230 to 280 g were used in the study. Under anesthesia, a polyethylene tube was implanted in the subcutaneous area of the vibrissa pad, which enabled drug-injection. After subcutaneous injection of artemin, changes in air-puff thresholds and head withdrawal latency time were evaluated. Subcutaneous injection of artemin (0.5 or $1{\mu}g$) produced significant thermal hyperalgesia in a dose-dependent manner. However, subcutaneous injection of artemin showed no effect on air-puff thresholds. IRTX ($4{\mu}g$), a TRPV1 receptor antagonist, D-AP5 (40 or $80{\mu}g$), an NMDA receptor antagonist, or NBQX (20 or $40{\mu}g$), an AMPA receptor antagonist, was injected subcutaneously 10 min prior to the artemin injection. Pretreatment with IRTX and D-AP5 significantly inhibited the artemin-induced thermal hyperalgesia. In contrast, pretreatment with both doses of NBQX showed no effect on artemin-induced thermal hyperalgesia. Moreover, pretreatment with H-89, a PKA inhibitor, and chelerythrine, a PKC inhibitor, decreased the artemin-induced thermal hyperalgesia. These results suggested that artemin-induced thermal hyperalgesia is mediated by the sensitized peripheral TRPV1 and NMDA receptor via activation of protein kinases.

Control Mechanisms of Ovulation by Pituitary Adenylate Cyclase-Activating Polypeptide (Pituitary Adenylate Cyclase-Activating Polypeptide에 의한 배란 조절에 관한 연구)

  • Lee, Yu-Il;Kim, Hyoung-Choon;Kim, Mi-Young;Chun, Sang-Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.32 no.2
    • /
    • pp.101-111
    • /
    • 2005
  • 배 경: Pituitary adenylate cyclase-activating polypeptide (PACAP)은 양의 시상하부에서 추출된 신경펩타이드 호르몬으로 난소에도 존재하여 배양된 과립막 세포에서 스테로이드합성과 cyclic AMP 형성을 촉진함이 보고되었다. 목 적: 흰쥐 난소를 실험 모델로 사용하여 배란시 황체화호르몬 (luteinizing hormone; LH)에 의해 유도된 PACAP과 PACAP 수용체의 유전자 발현양상과 신호 전달경로를 규명하고자 하였다. 재료 및 방법: 미성숙 흰쥐의 배란전 난포를 체외 배양하면서 LH로 처리하고 PACAP 및 PACAP수용체의 유전자 발현을 보기 위해서는 Northern blot 분석과 in situ hybridization (ISH)을, 그리고 단백질 수준의 PACAP 검색을 위해서는 enzyme linked immunosorbent assay (ELISA) 분석을 이용하였다. 결 과: LH 처리 후 Northern blot상의 PACAP 유전자 발현은 6~9시간에 일시적으로 최고치에 도달하였으며 ISH로 보아 과립막 세포에서 발현됨을 알 수 있었다. ELISA 분석 상 PACAP 단백질도 LH처리 후 6~12시간에 최고치를 나타내었으며, PACAP 수용체 mRNA 역시 3~9시간에 최고치로 과립막 세포에서 발현되었다. Adenylate cyclase (AC) 억제제인 MDL12330A 처리시 LH로 발현된 PACAP mRNA가 감소되며, AC의 활성제인 forskolin 처리에는 LH시와 유사한 PACAP mRNA의 발현양상을 나타내었다. 그러나 protein kinase C (PKC)의 억제제인 chelerythrine과 2-0-tetradecanolphorbol-13-acetate (TPA) 처리로는 PACAP 의 유전자 발현에 영향을 주지 못하였다. 5-lipoxygenase의 억제제인 MK886이나 nordihydroguaiaretic acid (NDGA)로 처리한 결과 LH로 유도된 PACAP 유전자의 발현이 감소되었으나, cyclooxygenase의 억제제인 indomethacin은 별로 영향을 주지 못하였다. MEK와 p38의 억제제인 PD98059와 SB203580도 LH로 촉진 된 PACAP의 유전자 발현을 농도 의존적으로 억제하였다. 결 론 : 배란전 난포에서 PACAP과 PACAP 수용체의 유전자 발현은 모두 LH의 폭발적 분비에 의해 유도되어 일시적으로 과립막 세포에서 나타나 배란을 위한 국소적인 조절 작용을 할 것으로 추정되며, LH로 촉진된 PACAP 유전자 발현을 위한 신호전달은 cAMP-PKA, lipoxygenase 및 MAP kinase 경로를 통하는 것으로 사료된다.

Targeting Catecholamines to Develop New Drugs for Attention Deficit Hyperactivity Disorder (주의력결핍 과잉행동장애 치료제 개발을 위한 카테콜아민계 표적화)

  • Sung-Cherl Jung;Chang-Hwan Cho;Hye-Ji Kim;Eun-A Ko;Min-Woo Ha;Oh-Bin Kwon
    • Journal of Medicine and Life Science
    • /
    • v.18 no.3
    • /
    • pp.41-48
    • /
    • 2021
  • The prevalence of attention deficit hyperactivity disorder (ADHD), a developmental neuropsychiatric disorder, is high among children and adolescents. The pathogenesis of ADHD is mediated with genetic, biological, and environmental factors. Most therapeutic drugs for ADHD have so far targeted biological causes, primarily by regulating catecholaminergic neurotransmitters. However, ADHD drugs that are clinically treated have various problems in their addictiveness and drug stability; thus, it is recommended that efficacy and safety should be secured through simultaneous prescription of multiple drugs rather than a single drug treatment. Accordingly, it is necessary to develop drugs that newly target pathogenic mechanisms of ADHD. In this study, we attempt to confirm the possibility of developing new drugs by reviewing dopamine-related developmental mechanisms of neurons and their correlation with ADHD. Histone deacetylase inhibitors (HDACi) can regulate the concentration of intracellular dopamine in neurons by expressing vesicular monoamine transporter 2 and inducing the exocytosis of neurotransmitters to the synaptic cleft, thereby promoting the development of neurons and signal transmission. This cellular modulation of HDACi is expected to treat ADHD by regulating endogenous catecholamines such as dopamine. Although studies are still in the preclinical stage, HDAC inhibitors clearly have potential as a therapeutic agent with low addictiveness and high efficacy for ADHD treatment.

Expression of Bombyx mori Transferrin Gene in Response to Oxidative Stress or Microbes (미생물 및 산화적 스트레스에 의한 누에 트랜스페린 발현)

  • Yun, Eun-Young;Kwon, O-Yu;Hwang, Jae-Sam;Ahn, Mi-Young;Goo, Tae-Won
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1607-1611
    • /
    • 2011
  • To analyze the role of Bombyx mori transferrin (BmTf) in response to microbes or oxidative stress, we investigated the level of BmTf transcripts in B. mori treated with various microbes and oxidative stress inducers. BmTf mRNA was mainly expressed in the epidermis and fat in the bodies of B. mori injected with Escherichia coli, and up regulated in response to microbes such as bacteria, fungi, or viruses, but was hardly altered in response to oxidative stress inducers such as $H_2O_2$, Cu, or $FeCl_3$. We also confirmed that BmTf mRNA expression was increased in Bm5 cells treated with ERK, PLC, PKA, PI3K, MAPK, or JNK inhibitors, respectively. To identify the major inducer of BmTf expression, we analyzed the amount of serum iron in the hemolymph of B. mori after injection or feeding with E. coli or $FeCl_3$. The results showed that the amount of serum iron was not changed by injection and feeding with E. coli, although BmTf mRNA was increased by injection with E. coli. On the contrary, injection and feeding with $FeCl_3$ significantly increased the amount of serum iron, although they did not alter the BmTf mRNA level. On the basis of these results, we assume that up-regulation of BmTf in B. mori is closely related to the defense of microorganism, and BmTf may be expressed at the basal constitutive level when it plays a role in iron metabolism by maintaining iron homeostasis and in the insect defense mechanism against oxidative stress.

Regulatory Action of $\beta-adrenergic$ Agonist and 8-bromocyclic AMP on Calcium Currents in the Unfertilized Mouse Eggs

  • Haan, Jae-Hee;Cheong, Seung-Jin;Kim, Yang-Mi;Park, Choon-Ok;Hong, Seong-Geun
    • The Korean Journal of Physiology
    • /
    • v.27 no.2
    • /
    • pp.175-183
    • /
    • 1993
  • There are many report suggesting that influx and intracellular calcium concentration $([Ca^{2+}]_i)$ are related to cell signalling in various cells. However, it has not been reported that calcium channel activation is affected by the substances involved in signal transduction pathways in the mouse eggs. In this study, the effects of isoprenaline (ISP) and cyclic AMP on calcium influx through calcium channels were investigated to show their relationship with the signal transduction process in unfertilized mouse eggs. Using whole cell voltage clamp techniques, calcium currents, elicited by the depolarizing pulses of 300 ms duration (from -50 mV to 50 mV in 10 mV increments) from a holding potential of -80 mV, were recorded. The current-voltage (I-V) relation of calcium currents was shown to be bell-shaped; the current began to activate at -50 mV and reached its maximum $(-1.33{\pm}0.16\;nA:\;mean{\pm}S.E.,\;n=7)$ at -10 mV, then decayed at around 50 mV. Calcium currents were fully activated within $7\;ms{\sim}20\;ms$ and completely inactivated 200 ms after onset of the step pulse. ISP within the concentration ranges of $10^{-8}\;M{\sim}10^{-4}\;M$ dose-dependently increased the amplitude calcium current. The permeable cyclic AMP analogue,8-bromocyclic AMP, also increased its maximal amplitude by 46ft at $10^{-5}\;M$, while protein kinase inhibitor (PKI), which is known to inhibit 0.02 phosphorylating units of cyclic AMP-dependent protein kinase (PKA) per microgram decreased calcium currents. Currents recorded in the presence of PKI were resistant to increase by the application of $10^{-5}\;M$. Also, PKI inhibited the calcium current increase elicited by ISP treatment. These results suggest that $\beta-adrenergic$ regulation of the calcium channel is mediated by the cAMP-dependent protein kinase. This signal transduction pathway might play a role in regulating $[Ca^{2+}]_i$, level due to the increase of calcium influx in mouse eggs.

  • PDF

Modulatory Effect of the Tyrosine Kinase and Tyrosine Phosphatase on the ACh-activated $K^{+}$ Channel in Adult Rat Atrial Cells

  • Chang, Kyeong-Jae;Rhie, Sang-Ho;Heo, Ilo;Kim, Yang-Mi;Haan, Jae-Hee;Hong, Seong-Geun
    • The Korean Journal of Physiology
    • /
    • v.30 no.2
    • /
    • pp.209-218
    • /
    • 1996
  • Acetylcholine (ACh) activates the inwardly rectifying muscarinic $K^{+}$ channel in rat atrial cells via pertussis toxin (PTX)-sensitive G-protein ($G_k$) coupled with the muscarinic receptor (mAChR). Although this $K^{+}\;(K_{ACh})$ channel function has reported to be modulated by the phosphorylation process, a kinase and phosphatase involved in these processes are still unclear. Since either PKA or PKC was not effective on this ATP-modulation, the present study examined the possible involvement of the protein tyrosine kinase (PTK) and protein tyrosine phosphatase (PTP) in the function of the $K_{ACh}$ Channel. In the inside-out (I/O) patch preparation excised from the adult rat atrial cell, when activated by 10 ${\mu}M$ ACh in the pipette and 100 ${\mu}M$ GTP in the bath, the mean open time (${\tau}_{o}$) and the channel activity ($K_{ACh}$) was 1.13 ms (n=5) and 0.19 (n=6), respectively. Following the application of 1 mM ATP into the bath, ${\tau}_{o}$ increased by 34% (1.54 ms, n=5) and $K_{ACh}$ by 66% (0.28, n=6). Channel function elevated by ATP was lasted after washout of ATP. However, this ATP-induced increase in the $K_{ACh}$ channel function did not occur in pretreated cells with genistein ($50{\sim}100 {\mu}M$), a selective PTK inhibitor, but occurred in pretreated cells with equimolar daidzein, a negative control of the genistein. On the contrary, PTP which acts on tyrosine residue conversely reversed both ATP-induced increased ${\tau}_{o}$ by 32% (1.20 ms, n=3) and $K_{ACh}$ by 41% (0.15, n=3), respectively. Taken together, these results suggest that $K_{ACh}$ channel may, at least partly, be regulated by the tyrosyl phosphorylation, although it is unclear where this process exerts on the muscarinic signal transduction pathway comprising the mAChR-$G_{k}$-the $K_{ACh}$ channel.

  • PDF