• 제목/요약/키워드: PIV Measurement

검색결과 359건 처리시간 0.024초

An Experimental Investigation of Unsteady Mixed Convection in a Horizontal Channel with Cavity Using Thermo-Sensitive Liquid Crystals

  • Bae, Dae-Seok;Cai, Long-Ji;Kim, Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권7호
    • /
    • pp.987-993
    • /
    • 2009
  • An experimental study is performed to investigate unsteady mixed convection in a horizontal channel with a heat source. Particle image velocimetry (PIV) with thermo-sensitive liquid crystal (TLC) tracers is used for visualization and analysis. This method allows simultaneous measurement of velocity and temperature fields at a given instant of time. Quantitative data of the temperature and velocity are obtained by applying the color-image processing to a visualized image, and neural network is applied to the color-to-temperature calibration. It is found that the periodic flow of mixed convection in a cavity appears at very low Reynolds numbers (Re<0.4), and the period decreases with increasing Reynolds numbers and increases with increasing aspect ratio.

Construction of Virtual Images for a Benchmark Test of 3D-PTV Algorithms for Flows

  • Hwang, Tae-Gyu;Doh, Deog-Hee;Hong, Seong-Dae;Kenneth D. Kihm
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권8호
    • /
    • pp.1185-1194
    • /
    • 2004
  • Virtual images for PIV are produced for the construction of a benchmark test tool of PTV systems, Camera parameters obtained by an actual experiment are used to construct the virtual images, LES(Large Eddy Simulation) data sets of a channel flow are used for generation of the virtual images, Using the virtual images and the camera's parameters. three-dimensional velocity vectors are obtained for a channel flow. The capabilities of a 3D-PTV algorithm are investigated by comparing the results obtained by the virtual images and those by an actual measurement for the channel flow.

간격을 갖는 원주열의 후류특성에 관한 연구 (A Study on Wake Flow behind a pair of Circular Cylinders with gap)

  • 김준호;최민선;조대환;이경우
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 춘계학술대회 논문집
    • /
    • pp.135-139
    • /
    • 2001
  • This experimental study investigates the wake flow behind a pair of cylinders displaced normal to a free stream. In this experiment, the principal aim is to investigate the transition mechanism of the large vortex generating process in the wake having unique vortex shedding pattern. associated with the gap difference between the cylinders. The detailed visualization is carried out using the PIV measurement. The transition mechanism of the large generating vortex is clarified by showing the streak lines. the vorticity and the statistical fluctuating velocity distributions.

  • PDF

수직상향 기체 주입에 따른 기포 및 액상의 유동분석 (Flow Analysis of Bubble and Liquid Phase by Vertical Upward Gas Injection)

  • 서동표;오율권
    • 설비공학논문집
    • /
    • 제15권9호
    • /
    • pp.727-732
    • /
    • 2003
  • In the present study, a PIV measurement and image processing technique were applied in order to investigate the flow characteristics in the gas injected liquid bath. The circulation of liquid was induced by upward bubble flow. Due to the centrifugal force, the flow was well developed near both wall sides than in the center of a bath. The vortex flow irregularly repeated generation and disappearance which helped to accelerate the mixing process. The bubble rise velocity in the bottom region was relatively lower than in the upper region because the energy generated by bubbles' behavior in the region near the nozzle was almost converted into kinetic energy But bubble rise velocity increases with the increase of the axial distance since kinetic energy of rising bubbles is added to buoyancy force. In conclusion, the flow increased bubble rise velocity and the flow of the bottom region became more active.

Particle Image Velocimetry Measurement of Unsteady Turbulent Flow around Regularly Arranged High-Rise Building Models

  • Sato, T.;Hagishima, A.;Ikegaya, N.;Tanimoto, J.
    • 국제초고층학회논문집
    • /
    • 제2권2호
    • /
    • pp.105-113
    • /
    • 2013
  • Recent studies proved turbulent flow properties in high-rise building models differ from those in low-rise building models by comparing turbulent statistics. Although it is important to understand the flow characteristics within and above high-rise building models in the study of urban environment, it is still unknown and under investigation. For this reason, we performed wind tunnel experiment using Particle Image Velocimetry (PIV) to investigate and identify the turbulent flow properties and characteristic flow patterns in high-rise building models. In particular, we focus on instantaneous flow field near the canopy and extracted flow field when homogeneous flow field were observed. As a result, six characteristic flow patterns were identified and the relationship between these flow patterns and turbulent organized structure were shown.

적합직교분해(POD)기법을 사용한 난류 응집구조 거동에 관한 연구 (A Study on the Effect of Large Coherent Structures to the Skin Friction by POD Analysis)

  • 신성윤;정광효;강용덕;서성부;김진;안남현
    • 대한조선학회논문집
    • /
    • 제54권5호
    • /
    • pp.406-414
    • /
    • 2017
  • An experimental study in a recirculating water channel was carried out to investigate the effect of large coherent structures to the skin friction on a flat plate. Particle Image Velocimetry (PIV) technique was used to quantify characteristic features of coherent structures growing to the boundary layer. In the PIV measurement, it is difficult to calculate the friction velocity near the wall region due to laser deflection and uncertainty so that Clauser fitting method at the logarithmic region was adopted to compute the friction velocity and compared with the one directly measured by the dynamometer. With changing the free-stream velocity from 0.5 m/s to 1.0 m/s, the activity of coherent structures in the logarithmic region was increased over three times in terms of Reynolds stress. The flow field was separated by Variable Interval Time Averaging (VITA) technique into the weak and the strong structure case depending on the existence large coherent structures in order to validate its effectiveness. The stream-wise velocity fluctuation was scanned through at the boundary thickness whether it had a large deviation from background flow. With coherent structures connected from near-wall to the boundary layer, mean wall shear stress was higher than that of weak structure case. Proper Orthogonal Decomposition (POD) analysis was also applied to compare the energy budget between them at each free-stream velocity.

Experimental study on the vertical bearing behavior of nodular diaphragm wall in sandy soil based on PIV technique

  • Jiujiang Wu;Longjun Pu;Hui Shang;Yi Zhang;Lijuan Wang;Haodong Hu
    • Geomechanics and Engineering
    • /
    • 제35권2호
    • /
    • pp.195-208
    • /
    • 2023
  • The nodular diaphragm wall (NDW) is a novel type of foundation with favorable engineering characteristics, which has already been utilized in high-rise buildings and high-speed railways. Compared to traditional diaphragm walls, the NDW offers significantly improved vertical bearing capacity due to the presence of nodular parts while reducing construction time and excavation work. Despite its potential, research on the vertical bearing characteristics of NDW requires further study, and the investigation and visualization of its displacement pattern and failure mode are scant. Meanwhile, the measurement of the force component acting on the nodular parts remains challenging. In this paper, the vertical bearing characteristics of NDW are studied in detail through the indoor model test, and the displacement and failure mode of the foundation is analyzed using particle image velocimetry (PIV) technology. The principles and methods for monitoring the force acting on the nodular parts are described in detail. The research results show that the nodular part plays an essential role in the bearing capacity of the NDW, and its maximum load-bearing ratio can reach 30.92%. The existence of the bottom nodular part contributes more to the bearing capacity of the foundation compared to the middle nodular part, and the use of both middle and bottom nodular parts increases the bearing capacity of the foundation by about 9~12% compared to a single nodular part of the NDW. The increase in the number of nodular parts cannot produce a simple superposition effect on the resistance born by the nodular parts since the nodular parts have an insignificant influence on the exertion and distribution of the skin friction of NDW. The existence of the nodular part changes the displacement field of the soil around NDW and increases the displacement influence range of the foundation to a certain extent. For NDWs with three different nodal arrangements, the failure modes of the foundations appear to be local shear failures. Overall, this study provides valuable insights into the performance and behavior of NDWs, which will aid in their effective utilization and further research in the field.

용융아연 도금공정에서의 SNOUT 내부 유동장 해석 ( I ) (Velocity Field Measurement of Flow Inside SNOUT of Zinc Plating Process ( I ))

  • 신대식;최제호;이상준
    • 대한기계학회논문집B
    • /
    • 제23권10호
    • /
    • pp.1265-1273
    • /
    • 1999
  • PIV(Particle Image Velocimetry) velocity field measurements inside the snout of a1/10 scale model of the Zn plating process were carried out at the strip speed $V_s=1.5m/s$. Aluminum powder particles ($1{\mu}m$) and atomized olive oil ($3{\mu}m$) were used as seeding particles to simulate the molten Zinc flow and deoxidization gas flow, respectively. A pulsed Nd:Yag laser and a $2K{\times}2K$ high-resolution CCD camera were synchronized for the PIV velocity field measurement. From flow visualization study, it is found that the liquid flow in the Zn pot is dominantly governed by the uprising flow caused by the rotating sink roll, with its effect on the steel strip inside the snout largely diminished by installing of the snout. The deoxidization gas flow in front of the strip inside the snout can be characterized by a large-scale vortex rotating clockwise direction formed by the moving strip. In the rear side of the strip, a counter-clockwise vortex is formed and some of the flow entrained by the moving strip impinges on the free surface of molten zinc. The liquid flow in front of the strip is governed by the flow entering the snout, caused by the spinning sink roll. Just below the free surface a counter-clockwise vortex is formed near the snout wall. The moving strip affects dominantly the flow behind the strip inside the snout, and large amount of the liquid flow follows the moving strip toward the sink roll. The thickness of the flow following the strip is very thin in the front side due to the uprising flow, however thick boundary layer is formed in the rear side of the strip. Its thickness is increased as moving downstream toward the sink roll. Inside the snout, the deoxidization gas flow above the free surface is much faster than the liquid flow in the zinc pot. Due to the larger influx of the flow following the moving strip in the rear side of the strip, higher percentage of imperfection can be anticipated on the rear surface of the strip.

실내모형시험에서 No-target 프로그램을 이용한 터널 굴착으로 인한 지반거동 측정 (Measurement of ground behaviour due to tunnelling using No-target program in laboratory model test)

  • 이종현;이창노;이용주
    • 한국터널지하공간학회 논문집
    • /
    • 제21권3호
    • /
    • pp.397-418
    • /
    • 2019
  • 터널 굴착으로 인한 지반 및 인접 구조물의 거동을 이해하고 분석하는 것은 매우 중요하며, 이는 현대사회에서의 과학기술의 발전과 함께 토목공학 분야에서 폭넓게 활용되고 있다. 근거리 사진계측기법은 지반공학 분야에서 주로 쓰이고 있으며, 최근 GeoPIV 등을 이용한 계측기법의 연구가 증가하고 있는 추세이다. 본래에는 지반의 거동을 계측하여 시각화하는 방법으로 알루미늄 봉과 타겟 포인트를 이용한 VMS 프로그램이 주로 사용되어 왔다. 하지만 이러한 방법을 적용할 경우, 타겟 포인트가 손에 의해 인위적으로 설치되기 때문에 외부적인 오차가 발생할 수 있다. 또한 포인트 사이의 그리드가 넓거나 좁을 경우 희박한 데이터가 도출될 수 있는 문제점을 안고 있다. 따라서 본 연구에서는 타겟의 사용 없이 변위를 분석할 수 있는 MATLAB 기반의 No-target 프로그램을 개발하였고 수치해석과 실내 모형시험을 통해 기존의 프로그램과의 비교 및 검증에 초점을 맞추었다. 연구 내용으로는 greenfield condition, strip foundation, pile foundation 3가지 Case에 대하여 실내 모형시험을 실시하였으며, VMS 프로그램과 No-target 프로그램의 결과로부터 total displacement와 vertical displacement의 오차율을 분석하였다. 또한 유한요소 수치해석 프로그램인 PLAXIS를 통하여 실내 모형시험과의 결과와 비교 및 검증하였다.

환형 이젝터 루프 내부의 이상유동특성 파악을 위한 수치해석 및 유동가시화 연구 (Numerical Analysis and Flow Visualization Study on Two-phase Flow Characteristics in Annular Ejector Loop)

  • 이동엽;김윤기;김현동;김경천
    • 한국가시화정보학회지
    • /
    • 제9권4호
    • /
    • pp.47-53
    • /
    • 2011
  • A water driven ejector loop was designed and constructed for air absorption. The used ejector was horizontally installed in the loop and annular water jet at the throat entrained air through the circular pipe placed at the center of the ejector. Wide range of water flow rate was provided using two kinds of pumps in the loop. The tested range of water flow rate was 100${\ell}$ /min to 1,000 ${\ell}$/min. Two-phase flow inside the ejector loop was simulated by CFD analysis. Homogeneous particle model was used for void fraction prediction. Water and air flow rates and pressure drop through the ejector were automatically recorded by using the LabView based data acquisition system. Flow characteristics and air bubble velocity field downstream of the ejector were investigated by two-phase flow visualization and PIV measurement based on bubble shadow images. Overall performance of the two-phase ejector predicted by the CFD simulation agrees well with that of the experiment.