• Title/Summary/Keyword: PIT(powder-in-tube) method

Search Result 14, Processing Time 0.022 seconds

Effect of drawing process parameters on a sausaging in Bi(Pb)-2223 superconductor (Bi(Pb)-2223 초전도 선재에서 소세징에 대한 인발 공정 변수의 영향)

  • 박동인;김병민;오상수;하홍수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.311-314
    • /
    • 2003
  • Superconduction materials possess electrical/electronic and magnetic properties. Because superconduction materials is a ceramic powder, that can not be produced singlehandedly. So Ag sheathed Bi-2223 wire was produced by drawing process using powder-in-tube(PIT) method This superconductor has many difficulties to produce. The main difficulty is that the mechanical properties of the ceramic powder are very different from those of the Ag sheath. Actually, the fabrication of Ag sheathed Bi-2223 superconductor by PIT tends to lead to non-uniformity in the core thickness during drawing process. That is so called “Sausaging”. This study analyzed a sausaging using the finite-element method. Also, Effects of drawing process parameters on a sausaging has been carried out using finite element method. Finally, A way to prevent a sausaging has been discussed.

The effects of the powder packing density on the Bi-2223/Ag tape in PIT(powder-in-tube) method (PIT법에서 분말 충진밀도가 Bi-2223/Ag 선재에 미치는 효과)

  • 김성환;유재무;고재웅;박성창;박명제;정형식;김철진
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.101-104
    • /
    • 2002
  • The influences of the powder packing density on the Bi-2223/Ag tape have been investigated. For packing powder, both method of uniaxial press and packed rod form made by cold isostatic press(CIP) have been applied. As the pressure of cold isostatic press(CIP) is increased, fill factor and critical current (Ic) of Bi-2223/Ag tape is increased. At a pressure of 2000kgf/cm$^2$, fill factor reach ∼3l% and this sample has the engineering current density(Je) value of ∼8.5kA/cm$^2$(Ic ∼77A, Jc ∼ 30kA/cm$^2$). The tape sample packed by uniaxial press method shows more sawsaging effect than the sample processed by cold isostatic press(CIP), resulting from inhomogity of powder distribution produced by the process of uniaxial press.

  • PDF

The effect of mechanical working on processing the Bi-2223/Ag tapes using PIT method

  • Oh, S.S.;Ha, D.W.;Kim, S.C.;Bae, S.W.;Kwon, Y.K.;Ryu, K.S.;Ha, H.S.
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.276-279
    • /
    • 2000
  • When high temperature superconducting tapes is fabricated using the PIT (Powder In Tube) method, the length of HTS tapes is increased more than 500 ${\sim}$ 1,000 times of initial powder packed billet. On mechanical processing, heterogeneous properties between the ceramic superconducting core and Ag/Ag alloy sheath occur the non-uniformity deformation as like sausaging that deteriorate the critical current properties of HTS tapes. In this study, we investigated the workability of Bi-2223/Ag/Ag alloy sheath tapes fabricated by the PIT method involving a number of different mechanical processes, multi drawing and rolling. In order to obtain the high critical current density and high uniformity of Bi-2223/Ag sheath tapes, the influences of powder packing density, drawing die angle and rolling parameters were studied. We found that the roll diameter is an important variable in the rolling process, as critical current of tapes rolled using 250 mm rolls was higher than that using 150 mm rolls.

  • PDF

A Study on Multi-Filament Drawing of Bi2223 High-Temperature Superconductivity Wire by FE Method (유한요소법에 의한 Bi2223 고온 초전도 선재의 다심 인발에 대한 연구)

  • 박동인;김병민;오상수
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.78-83
    • /
    • 2004
  • High-temperature superconduction materials(Bi2223) possess electrical/electronic and magnetic properties. Because high-temperature superconduction materials is a ceramic powder, that cannot be produced singlehandedly. So Ag sheathed Bi-2223 wire was produced by drawing process using powder-in-tube(PIT) method. This superconductor has many difficulties to produce. The main difficulty is that the mechanical properties of the ceramic powder are very different from those of the Ag sheath. And by these properties, Bi2223 high-temperature superconductor, which has a single filament drawing process and multi-filament drawing process, has a defect like sausaging and bursting at a center. This study analyzed multi-filament drawing process by FEM, and a defect generated during multi-filament drawing was studied by FEH. Specially, in order to prevent a bursting at a center, this study presented a method that inserts a pure Ag at a center of multi-filament wire

Study for multi-filament drawing of Bi2223 high-temperature superconductivity wire by FE method (유한요소법에 의한 Bi2223 고온 초전도 선재의 다심 인발에 대한 연구)

  • 박동인;김병민;오상수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.273-276
    • /
    • 2003
  • High-temperature superconduction materials(Bi2223) possess electrical/electronic and magnetic properties. Because high-temperature superconduction materials is a ceramic powder, that can not be produced singlehandedly. So Ag sheathed Bi-2223 wire was produced by drawing process using powder-in-tube(PIT) method. This superconductor has many difficulties to produce. The main difficulty is that the mechanical properties of the ceramic powder are very different from those of the Ag sheath. Bi2223 high-temperature superconductivity have a single filament drawing process, and multi-filament drawing process. This study analysed multi-filament drawing process by FEM, a defects during multi-filament drawing was studied by FEM.

  • PDF

A study on Improvement of Critical Current for Bi-2223 HTS Tapes (Bi-2223 고온초전도 선재의 임계전류 향상에 관한 연구)

  • 하홍수;정종만;이남진;장현만;하동우;오상수;권영길;류강식
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.3-5
    • /
    • 2000
  • Among the various processing techniques used in HTS wire fabrication, the PIP(Powder In Tube) method is currently one of the most promising for applications on an industrial scale. In this study, we have fabricated Bi-2223/Ag superconducting tapes using the modified PIT process, where several process factors were changed and improved, ie., powder packing, drawing, rolling and heat treatment. We obtained Bi-2223 tape that have high critical current, 46 a at 77.3 K, have high critical current, 46A at 77.3 K, self field although the tape was not pressed but only rolled. The critical current of 100m class long length tape was measured 21.6A at the same criterion. Besides, the critical current of Bi-2223/Ag tape was measured applying magnetic fields with different directions at various temperatures.

  • PDF

Flux Loss and Neutron Diffraction Measurement Ag-sheathed Bi-2223 Tapes in terms of Flux Creep

  • Jang Mi-Hye
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.5
    • /
    • pp.204-210
    • /
    • 2005
  • Alternating current (AC) losses of two Bi-2223 ([Bi, Pb]: Sr: Ca: Cu: O = 2:2:2:3) tapes [(Tape I, un-twist-pitch) and the other with a twist-pitch of 10 mm (Tape II)] were measured and compared. These samples, produced by the powder-in-(Ag) tube (PIT) method, are multi-filamentary. Also, it's produced by non-twist and different twist pitch (8, 10, 13, 30, 50 and 70 mm). The critical current measurement was carried out under the environment in liquid Nitrogen and in zero-field by 4-probe method. Susceptibility measurements were conducted while cooling in a magnetic field. Flux loss measurements were conducted as a function of ramping rate, frequency and field direction. The AC flux loss increases as the twist-pitch of the tapes decreased, in agreement with the Norris Equation. Neutron-diffraction measurements have been carried out investigate the crystal structure, magnetic structures, and magnetic phase transitions in Bi-2223([Bi, Pb]:Sr:Ca:Cu:O)

The Influence of Drawing Parameters on Sausaging and Critical Current of Bi-2223/Ag HTS Wires. (Bi-2223/Ag 고온 초전도 선재의 임계전류 및 소세징에 미치는 인발 조건의 영향)

  • 하홍수;오상수;하동우;김상철;권영길;류강식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.488-491
    • /
    • 2000
  • Bi-2223/Ag superconducting wires have been mainly prepared by a powder-in-tube method. The drawing and the rolling are main processes to increase the core density and wire length. In the fabrication of long wire, especially, the drawing should be precisely controlled to assure the filament homogeneity. In this paper, the influences of drawing die angle, bearing length and reduction ratio on the sausaging and the critical current density of the wire are investigated. Single cored and multi-filamentary wires are fabricated by PIT method with different conditions. The core densities and sausaging in the wires are investigated and are discussed regarding their relationship to the I$_{c}$. It was made clear that the geometry of drawing die is sensitively dependent on the sausaging. The improvement of I$_{c}$ was achieved by reducing the die angle and high core density.ity.

  • PDF

Mechanical Characteristics of Bi-2223 Wire for High-Tc Superconducting Cable (고온 초전도 케이블용 Bi-2223 선재의 기계적 특성)

  • 백승명;김영석;정순용;김상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.11
    • /
    • pp.1028-1034
    • /
    • 1998
  • Bi-2223 superconductor is known as one of the candidates for practical superconducting wires. Ag-sheathed Bi-2223 superconducting wires were fabricated using the powder-in-tube(PIT) method. When the 19-filaments wire was immersed in liquid nitrogen(77K), maximum critical current density Jc of 62 A/$mm_2$ at 0T was achieved. The critical current density has been shown to depend on the mechanical properties such as tensile stress and bending strain in Ag-sheathed Bi-2223 superconducting wires. The tensile strain for Jc degradation onset was in the range of 0.12~0.3%. In the case of 19-filaments wire, the bending strain is estimated to be smaller than 0.3% for the reasonable Jc value. The observed degradation of the critical current density due to strain effect is inevitable and can be attributed to the formation of microcracks within the superconducting core.

  • PDF

AC Loss Measurement and Analysis of Ag-sheathed Bi-2223 Conductors in Terms of Eddy Currents and Flux Creep

  • Jang, Mi-Hye
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.6
    • /
    • pp.211-215
    • /
    • 2003
  • Alternating current (AC) losses of two Bi-2223 ([Bi, Pb] : Sr : Ca : Cu :O = 2:2:2:3) tapes [one untwisted (Tape I, twist-pitch of $\infty$ mm) and the other with a twist-pitch of 8mm (Tape II) ] were measured and compared. These samples, produced by the powder-in-tube (PIT) method, are multi-filamentary and have a Ag/Au and Ag matrix, respectively. Susceptibility measurements were conducted while cooling in a magnetic field. Flux loss measurements were conducted as a function of ramping rate, frequency and field direction. The AC flux loss increases as the twist-pitch of the tapes decreased, in agreement with the Norris Equation.