• Title/Summary/Keyword: PIN receiver

Search Result 52, Processing Time 0.017 seconds

Implementation of a drone using the PID control of an 8-bit microcontroller (8bit 마이크로컨트롤러의 PID제어를 이용한 드론 구현)

  • Lee, Donghee;Moon, Sangook
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.9
    • /
    • pp.81-90
    • /
    • 2016
  • Recently drones have become popular enough to be one of the hobby. The drone refers to an unmanned aerial vehicle which can fly and be steered by a radio wave without a pilot and it has a airplane or helicopter shape. The drone was first started to be used from military purpose, but its usage has been expanded to the private such as construction site, crop-dusting, field discovery, freight shipping and drones to prevent cheating. However the drone that we can see often in the market is expansive, hard to be repaired when it broken down and has a discomfort of the short flight time. In this paper, to solve an uncomfortable talk on the cheap 8-bits microcontrollers ATmega128 Using drone for implementation. Axes gyroscope and accelerometers mcu between posture an attitude control, communications through drone control, pid. Receiver input them into transmitter signals of movements to control drone c the programming was implemented in on the basis of language. drone using ATmega128 microcontroller is possible hovering, By utilizing a pin that are not required for control it can be used as a drone for a variety of uses.

Optical Design of the Integrated Triplexer Fabricated by Micro Block Stacking Method (MBS 방법으로 제작한 집적형 Triplexer의 광학 설계)

  • Yoon, Hyun-Jae;Kim, Jong-Hyuk
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.4
    • /
    • pp.191-197
    • /
    • 2011
  • In this paper, we have designed an integrated triplexer which is the basic component for a FTTH(Fiber To The Home) system which can transmit CATV and voice/data at the same time in a single fiber. The integrated triplexer can be fabricated with a novel technique of "Micro-Block Stacking (MBS)" method which automatically aligns the optical components in the optical beam pass using accurate ceramic holders. We analyze the displacement of the optical focus according to the tolerances of the component dimensions and the assembly process using code V simulator. For the transmitter, the most serious shift of the focal points is caused by the displacements of the LD spot. So the focal point moves up to $72{\mu}m$ from the center point for ${\pm}25{\mu}m$, ${\pm}25{\mu}m$, ${\pm}30{\mu}m$ displacements. For the receiver the most serious shift of the focal points is caused by the displacements of a 0.8mm ball lens (for the analog receiving part) and a micro ball lens (for the digital receiving part), and the focal point moves up to $55{\mu}$ for ${\pm}55{\mu}m$, ${\pm}5{\mu}m$, ${\pm}55{\mu}m$ micro ball lens displacements.