• Title/Summary/Keyword: PIMA diabetes dataset

Search Result 3, Processing Time 0.015 seconds

Classification of the Diagnosis of Diabetes based on Mixture of Expert Model (Mixture of Expert 모형에 기반한 당뇨병 진단 분류)

  • Lee, Hong-Ki;Myoung, Sung-Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.149-157
    • /
    • 2014
  • Diabetes is a chronic disease that requires continuous medical care and patient-self management education to prevent acute complications and reduce the risk of long-term complications. The worldwide prevalence and incidence of diabetes mellitus are reached epidemic proportions in most populations. Early detection of diabetes could help to prevent its onset by taking appropriate preventive measures and managing lifestyle. The major objective of this research is to develop an automated decision support system for detection of diabetes using mixture of experts model. The performance of the classification algorithms was compared on the Pima Indians diabetes dataset. The result of this study demonstrated that the mixture of expert model achieved diagnostic accuracies were higher than the other automated diagnostic systems.

Investigating Non-Laboratory Variables to Predict Diabetic and Prediabetic Patients from Electronic Medical Records Using Machine Learning

  • Mukhtar, Hamid;Al Azwari, Sana
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.19-30
    • /
    • 2021
  • Diabetes Mellitus (DM) is one of common chronic diseases leading to severe health complications that may cause death. The disease influences individuals, community, and the government due to the continuous monitoring, lifelong commitment, and the cost of treatment. The World Health Organization (WHO) considers Saudi Arabia as one of the top 10 countries in diabetes prevalence across the world. Since most of the medical services are provided by the government, the cost of the treatment in terms of hospitals and clinical visits and lab tests represents a real burden due to the large scale of the disease. The ability to predict the diabetic status of a patient without the laboratory tests by performing screening based on some personal features can lessen the health and economic burden caused by diabetes alone. The goal of this paper is to investigate the prediction of diabetic and prediabetic patients by considering factors other than the laboratory tests, as required by physicians in general. With the data obtained from local hospitals, medical records were processed to obtain a dataset that classified patients into three classes: diabetic, prediabetic, and non-diabetic. After applying three machine learning algorithms, we established good performance for accuracy, precision, and recall of the models on the dataset. Further analysis was performed on the data to identify important non-laboratory variables related to the patients for diabetes classification. The importance of five variables (gender, physical activity level, hypertension, BMI, and age) from the person's basic health data were investigated to find their contribution to the state of a patient being diabetic, prediabetic or normal. Our analysis presented great agreement with the risk factors of diabetes and prediabetes stated by the American Diabetes Association (ADA) and other health institutions worldwide. We conclude that by performing class-specific analysis of the disease, important factors specific to Saudi population can be identified, whose management can result in controlling the disease. We also provide some recommendations learnt from this research.

Development of Type 2 Prediction Prediction Based on Big Data (빅데이터 기반 2형 당뇨 예측 알고리즘 개발)

  • Hyun Sim;HyunWook Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.999-1008
    • /
    • 2023
  • Early prediction of chronic diseases such as diabetes is an important issue, and improving the accuracy of diabetes prediction is especially important. Various machine learning and deep learning-based methodologies are being introduced for diabetes prediction, but these technologies require large amounts of data for better performance than other methodologies, and the learning cost is high due to complex data models. In this study, we aim to verify the claim that DNN using the pima dataset and k-fold cross-validation reduces the efficiency of diabetes diagnosis models. Machine learning classification methods such as decision trees, SVM, random forests, logistic regression, KNN, and various ensemble techniques were used to determine which algorithm produces the best prediction results. After training and testing all classification models, the proposed system provided the best results on XGBoost classifier with ADASYN method, with accuracy of 81%, F1 coefficient of 0.81, and AUC of 0.84. Additionally, a domain adaptation method was implemented to demonstrate the versatility of the proposed system. An explainable AI approach using the LIME and SHAP frameworks was implemented to understand how the model predicts the final outcome.