• Title/Summary/Keyword: PIFA Structure

Search Result 46, Processing Time 0.03 seconds

The Design of Broadband PIFA for Hand-Held Mobile Phones (이동통신 광대역 PIFA 안테나 설계 및 해석)

  • 김상준;이대헌;박천석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.855-862
    • /
    • 2003
  • This paper suggests the PIFA structure modified antenna in which short-circuit plate is located between planar element and ground plane, in order to solve the problem of narrow band of existing internal antenna, PIFA. It is also suggested that internal antenna has the perturbation in the patch to broaden the frequency bandwidth. It is possible that the antenna is installed into the mobile telephone with a low profile condition(h=0.015 λ) to use internally, and acquired desired bandwidth(5.2 %) through double resonance structure, remodeling the PIFA that is already well-known as an internal antenna. This paper investigated how characteristic is affected by the feeding point(Yf, Zf), short strip plate(Zs), short strip width(Ws), perturbation width(w), length(d), short plate height(h), dielectric($\varepsilon$$\_$r/) to be slim type antenna. It is compared with existing PIFA bandwidth, and is suggested pattern as the H.E plane. It is simulated using the Microwave Studio of the CST Inc. based on FIM(Finite Integration Method) method and analyzed antenna characteristic following the variation each parameters. The result proved the practical use of PIFA antenna by comparing the measured and simulated data of the antenna.

Optimum design of Triple-band PIFA using Evolution strategy (Evolution strategy 기법을 이용한 삼중대역 PIFA 최적 설계)

  • Ko, Jae-Hyeong;Paek, Hyun;Kim, Koon-Tae;Kim, Tae-Seong;Park, Doh-Hyeon;Ahn, Chang-Hoi;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1561_1562
    • /
    • 2009
  • In this paper, designed triple-band antenna of PIFA(Planar Inverted-F Antenna) structure with U-slot. We designed optimal PIFA structure using Evolution Strategy(ES) about two U-slot parameters. We materialized API(Application Program Interface) about EM simulator and Excel using VB(Visual Basic). The result of ES for triple-band PIFA are resonant frequency of 430MHz, 910.5MHz, 2458.5MHz.

  • PDF

Design of PIFA with Capacitor Structure Inserted into Feeding Loop (커패시터 구조를 급전 루프에 삽입한 광대역 PIFA 안테나 설계)

  • Kim, Seung-Woo;Park, Sang-Gyu;Kim, Hyeong-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.10
    • /
    • pp.1103-1108
    • /
    • 2010
  • This paper proposes a new type of PIFA with a capacitor structure inserted into the feeding loop. It operates in GSM900, DCS, PCS, and W-CDMA frequency bands. By inserting the capacitor, it shows the effect of lowering the return loss from -2.73 dB to -6.26 dB at the parallel frequency, 2.01 GHz. The improvement of the poor radiation property near the parallel resonance frequency leads to a broadband operation in the upper band, DCS, PCS, and W-CDMA.

Hybrid Planar Inverted-F Antenna with a T-Shaped Slot on the Ground Plane

  • Jeon, Sin-Hyung;Choi, Hyeng-Cheul;Kim, Hyeong-Dong
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.616-618
    • /
    • 2009
  • In this letter, a novel hybrid planar inverted-F antenna (PIFA) with a T-shaped slot on the ground plane is proposed. The loop structure formed by the feed line and shorting pin can be operated as a series and shunt inductance for the PIFA and the T-shaped slot antenna, respectively. The PIFA operates at a frequency of 1.75 GHz, while the T-shaped slot on the ground plane operates at 2.4 GHz by the same voltage feeding source. The height of the PIFA is 6.5 mm, and the size of an upper patch is designed to be 30 mm${\times}$16 mm. The measured relative impedance bandwidth of the PIFA and the T-shaped slot are about 12% and 21%, respectively. In addition, good antenna performance was achieved.

Design of A Dual-resonance PIFA Using U-Type Slot (U-형 슬랏을 이용한 이중 공진 PIFA 설계)

  • Kim, Yoon-Ho;Rhee, Joong-Geun;Kim, Jung-Hun;Jang, Tae-Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.11
    • /
    • pp.77-83
    • /
    • 2010
  • This paper presents the dual resonance PIFA(Planar Inverted F-Antenna) which satisfies the requirements of the 802.11n standard at both 2.4 GHz and 5 GHz frequency bands. Patch for 2.4 GHz and U-Type slot for 5 GHz were used for dual resonance, respectively. In this paper, the characteristics of an antenna were investigated by varying locations of short plate and feed point, the width of the short plate, the thickness and the location of U-Type slot. To investigate the characteristics of the PIFA, HFSS(High Frequency Structure Simulation) for the simulation was used. And the measurement results of a fabricated PIFA were compared with the simulated ones. The measurement and simulation results show that good dual resonance characteristics as the thickness of U-type slot decreases and when the location of U-type slot is far from the feed point.

Design of Broadband PIFA for PCS and IMT-2000 (PCS 및 IMT-2000용 광대역 PIFA 설계)

  • Lee, Jae-Hyang;Kim, Nam;Park, Ju-Derk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.3
    • /
    • pp.242-250
    • /
    • 2004
  • In this thesis, a new broadband PIFA(Planar Inverted-F Antenna) for PCS and IMP-2000 applications is designed. The dual-L antenna structure is adopted in order to improve the characteristics of PIFA which usually has a narrow band. The height of the antenna is fixed 6 mm considering terminal's thickness and the structure is deformed into the folded radiation patches to minimize the size of the antenna. The bandwidth of a realized antenna is 1.66∼2.35 ㎓(34.5 %) fur return loss below -10 ㏈ which contain the required bandwidth of PCS and IMT-2000. And Monopole antenna with λ/4 length is designed and compared with dual-L with folded patch in SAR. 1 g and 10 g averaged peak SAR of PIFA are about 25.7 %, 30.3 % lower than those of monopole antenna respectively.

Design and Implementation of the small PIFA with dual bandwidth using LTCC (이중대역 소형 LTCC 칩 PIFA의 설계 및 구현)

  • Nam, Sung-Soo;Kim, June-Hyong;Cho, Tae-June;Lee, Hong-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.1
    • /
    • pp.47-52
    • /
    • 2008
  • In this paper, the small PIFA with dual bandwidth using LTCC is the proposed. The proposed PIFA is designed and fabricated for dual resonance bands (K-PCS and WiBro). It consists of two layers. The bottom layer shape PIFA has 120MHz bandwidth (1.727 ~ 1.847 GHz), it satisfied K-PCS. The top layer shape stacked element has 110MHz bandwidth (2.302 ~ 2.412 GHz), it satisfied WiBro. The top layer is stacked on the bottom layer for electric coupling. Maximum radiation gain of K-PCS, WiBro bands are 2.11 dBi, 3.71 dBi respectively. For miniaturization of the antenna structure, the PIFA using LTCC ( ${\varepsilon}_r\;=\;8$ ) chip is fabricated. The proposed PIFA shows the effect of SAR reduction also. A defect that is fabricated by stacking up the layers in the design of PIFA is complemented by fabricated in using LTCC chip.

  • PDF

Feeding Point Determination for Optimum Performance of PIFA Internal Antenna for the Mobile Phone Handset (휴대폰 PIFA 내장형 안테나의 최적 성능을 위한 급전 위치 결정)

  • Son Tae-Ho;Lee Jae-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.3 s.106
    • /
    • pp.280-286
    • /
    • 2006
  • Determination method of optimum feeding point for the PIFA type internal antenna for the mobile phone handset was studied. Fundamental theory is that radiated gain is basically depended upon the electric field strength between PIFA conductor and ground plane. Feeding point, slit configuration, material and structure of carrier are main factors fur the PIFA performances. It is shown that maximum electric field strengths of other feeding points decrease in -2dB to -10 dB than optimum point. Ansoft HFSS EM simulator was applied to determine the best feeding point for 2 models of Samsung Electronics mobile phone handset.

PIFA and IFA Hybrid Antenna for the Data Communication Terminal (데이터통신 단말기용 PIFA 및 IFA 결합 안테나)

  • Chun, Moon-Kyu;Son, Tae-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.4
    • /
    • pp.65-70
    • /
    • 2011
  • In this paper, we designed and implemented a PIFA(Planer Inverted F Antenna) and IFA(Inverted F Antenna) hybrid antenna for the data communication terminal such as smart phone. Studied hybrid antenna has multi-band characteristics by the simultaneous operation both PIFA and IFA under a feeding structure. VSWR measurement of implemented antenna was satisfied 3:1 over GSM900/USPCS/WCDMA band. Measured average gains and efficiencies were -2.19~-3.63 dBi and 43.31~60.33 % for the GSM900 band, and -2.16~-10.67 dBi and 8.56~60.78 % for the USPCS/WCDMA band.

Inverted π Feeding PIFA for Gain Improvement for the Mobile Phone (이득 증가를 위한 휴대 단말기용 역 파이 급전 PIFA)

  • Son, Tae-Ho;Lee, Jae-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.12
    • /
    • pp.1337-1344
    • /
    • 2007
  • It is shown that inverted ${\pi}$ feeder affects the gain improvement for the internal antenna of mobile phone. Generation of current on the inverted ${\pi}$ feeder, by the modification of conventional feeding structure for the PIFA and IFA, can apply T matching theory to the new feeder. Therefore, inverted ${\pi}$ feeder based on the T matching theory makes higher radiation resistance, and also increases the gain. To verify inverted ${\pi}$ feeding effect, feeder is applied to GSM/DCS dual band conventional PIFA, and measured return loss and patterns. By measurement, it's shown that this new feeding antenna has $0.23{\sim}0.84$ dB higher average gain for GSM band and $0.01{\sim}1.74$ dB higher average gain for DCS band than conventional fed PIFA without resonant frequency change.