• Title/Summary/Keyword: PID gain turning

Search Result 4, Processing Time 0.017 seconds

Optimal Gain Estimation of PID Controller Using Neural Networks (신경망을 이용한 PID 제어기의 최적 이득값 추정)

  • Park, Seong-Wook;Son, Jun-Hyug;Seo, Bo-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.3
    • /
    • pp.134-141
    • /
    • 2004
  • Recently, neural network techniques are widely used in adaptive and learning control schemes for production systems. However, in general it takes up a lot of time to learn in the case applied in control system. Furthermore, the physical meaning of neural networks constructed as a result is not obvious. And in practice since it is difficult for the PID gains suitably, lots of researches have been reported with respect of turning schemes of PID gains. A neural network-based PID control scheme is proposed, which extracts skills of human experts as PID gains. This controller is designed by using three-layered neural networks. The effectiveness of the proposed neural network-based PID control scheme is investigated through an application for a production control system. This control method can enable a plant to operate smoothy and obviously as the plant condition varies with any unexpected accidents.

Convergence Progress about Applied Gain of PID Controller using Neural Networks (신경망을 이용한 PID 제어기 이득값 적용에 대한 수렴 속도 향상)

  • Son, Jun-Hyug;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.89-91
    • /
    • 2004
  • Recently Neural Network techniques have widely used in adaptive and learning control schemes for production systems. However, generally it costs a lot of time for learning in the case applied in control system. Furthermore, the physical meaning of neural networks constructed as a result is not obvious. And in practice since it is difficult to the PID gains suitably lots of researches have been reported with respect to turning schemes of PID gains. A Neural Network-based PID control scheme is proposed, which extracts skills of human experts as PID gains. This controller is designed by using three-layered neural networks. The effectiveness of the proposed Neural Network-based PID control scheme is investigated through an application for a production control system. This control method can enable a plant to operate smoothy and obviously as the plant condition varies with any unexpected accident. This paper goal is convergence speed progress about applied gain of PID controller using the neural networks.

  • PDF

Optimal Condition Gain Estimation of PID Controller using Neural Networks (신경망을 이용한 PID 제어기의 제어 사양 최적의 이득값 추정)

  • Son, Jun-Hyeok;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.717-719
    • /
    • 2003
  • Recently Neural Network techniques have widely used in adaptive and learning control schemes for production systems. However, generally it costs a lot of time for learning in the case applied in control system. Furthermore, the physical meaning of neural networks constructed as a result is not obvious. And in practice since it is difficult to the PID gains suitably lots of researches have been reported with respect to turning schemes of PID gains. A Neural Network-based PID control scheme is proposed, which extracts skills of human experts as PID gains. This controller is designed by using three-layered neural networks. The effectiveness of the proposed Neural Network-based PID control scheme is investigated through an application for a production control system. This control method can enable a plant to operate smoothy and obviously as the plant condition varies with any unexpected accident.

  • PDF

An Experimental Study on the Temperature Control For a Gas Engine Cogeneration System (가스엔진 열병합시스템의 온도제어에 관한 실험적 연구)

  • 장상준;유재석;방효선;한정옥
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.28-33
    • /
    • 1996
  • This study was carried out find out the appropriate tuning method of PID controller for a package type gas engine cogeneration system in terms of stabilizing the engine coolant temperature and system heat balance. In order to acquire the proper parameters of the controller, a system transfer function was set as a first order plus dead time model and thereafter model parameters were determined by using several tuning methods. And, with determined values of parameters and the system transfer functions, optimal turning method was selected by simulating the process using MATLAB. From the experimental results, it was found that obtained PID gains made the system stable in various operating conditions.

  • PDF