• Title/Summary/Keyword: PID controller PID

Search Result 1,741, Processing Time 0.026 seconds

Review on the Control Methods of Quadcopters (쿼드콥터 제어 방법 고찰)

  • Yoon, Jonghuyn;Lee, Seunghee;Park, Jong Hyeon;Han, Cheolheui
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.2
    • /
    • pp.13-19
    • /
    • 2015
  • Recently, quadcopters have been popular as aerial drones. The structure of quadcopters is simpler than traditional helicopters and they are easy to construct and maneuver. Various hardware platforms for quadcopters have been developed. However, the controller design is not easy due to the requirement of 6-DOF flights using 4 rotors(control inputs)(under-actuated systems). In order to overcome the underactuation problem, various control methods - PID, LQR, $H_{\infty}$, SMC, backstepping control, and etc. - have been suggested for the control of quadcopters. In this paper, dynamic features and control methods of quadcopters are reviewed and evaluated. Future works are proposed for designing the advanced controllers of quadcopters.

A study on self tuning fuzzy PI and PD type controller (PI 및 PD Type Fuzzy Controller의 자기동조에 관한 연구)

  • Lee, Sang-Seock
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.1
    • /
    • pp.3-8
    • /
    • 2000
  • This paper describes a development of self tuning scheme for PI and PO type fuzzy controllers. The output scaling factor(SF) is adjusted on-line by fuzzy rules according to the current trend of the controlled process. The rule-base for tuning the output SF is defined on error and change of error for the controlled variable using the most natural and unbiased membership functions. Simulation results demonstrate the better control performance can be achieved in comparison with Ziegler-Nichols(Z-N) PID controllers.

  • PDF

Controller Design of Single-phase Inverter Based on Pole-assignment Method (극 배치 기법을 기반으로 한 단상인버터의 제어기 설계)

  • Son, Kyoung-Min;Lee, Jin-Mok;Noh, Se-Jin;Choi, Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.139-141
    • /
    • 2008
  • This paper presents a PID controller and PI-PI dual loop controller for a single-phase inverter. The control parameters of conventional controllers are very difficult to make. But parameters of controllers based on pole-assignment are easy to make. Simulation results are presented for the system under R-L load, no load and change reference voltage.

  • PDF

Development of Temperature Controller using Program Control Method (프로그램 제어방식의 온도 제어장치 개발)

  • Park, Jung-Hoon;Kim, Jin-Keun;Hong, Sung-Hoon;Seo, Kang-Myun;Kang, Moon-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1852-1853
    • /
    • 2006
  • This paper describes the development of temperature controller using program control method for small heating system. This system consists of three parts; sensing part, control part that includes the PID control algorithm, and actuating part. We introduce a zero-crossing control method of TRIAC and firmware technique using single chip micro-controller(ATmega8535) in the control part.

  • PDF

A Study on the Engine/Brake integrated VDC System using Neural Network (신경망을 이용한 엔진/브레이크 통합 VDC 시스템에 관한 연구)

  • Ji, Kang-Hoon;Jeong, Kwang-Young;Kim, Sung-Gaun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.414-421
    • /
    • 2007
  • This paper presents a engine/brake integrated VDC(Vehicle Dynamic Control) system using neural network algorithm methods for wheel slip and yaw rate control. For stable performance of vehicle, not only is the lateral motion control(wheel slip control) important but the yaw motion control of the vehicle is crucial. The proposed NNPI(Neural Network Proportional-Integral) controller operates at throttle angle to improve the performance of wheel slip. Also, the suggested NNPID controller performs at brake system to improve steering performance. The proposed controller consists of multi-hidden layer neural network structure and PID control strategy for self-learning of gain scheduling. Computer Simulation have been performed to verify the proposed neural network based control scheme of 17 dof vehicle dynamic model which is implemented in MATLAB Simulink.

A Study on the Control of SMA Actuator for Smart Catheter (지능형 내시경용 SMA 엑츄에이터의 제어에 관한 연구)

  • Kim, Min-Sung;Park, Doo-Hwan;Park, Hyun-Choi;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.223-226
    • /
    • 2001
  • A SMA actuator fabricated in this paper generates the large force and it's structure is very simple. The SMA actuator was fabricated by small size with diameter of 4mm and length of 38mm and also it's actuations toward all the directions can be acquired because of three SMA springs which was fabricated with diameter of 1.2mm and 30 turns. We showed into applicability to smart catheter by analyzing accurately the dynamic characteristics such as heading angle, bending angle, force, displacement. For verifying control capacity of the fuzzy controller, we compared Fuzzy controller with PID controller by simulation.

  • PDF

Development of a high-performance controller for Laser Marking system using Galvanometer

  • Hyun, Bang-Seoung;Gi, Hong-Sun;Sam, Kang-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.111.5-111
    • /
    • 2001
  • This paper places great importance on performance improvement of Galvanometer system used for laser display, laser processing, marking system. Fundamentally, we implement control system, on that assumption that laser source exists, and design basic PID controller. Hardware is composed of DSP(TMS320C32) chip, and the position compensation of Galvanometer is performed by using 16-bit A/D and D/A converter. Through frequency response analysis and simulation, the attribute of plant and controller is captured and then, total system is analyzed. We deliberate noise problem that can be caused from analog signal as driving signal for Galvanometer.

  • PDF

A Design of Adaptive Steering Controller of AGV using Immune Algorithm

  • Lee, Chang-Hoon;Lee, Jin-Woo;Lee, Kwon-Soon;Lee, Young-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.120.3-120
    • /
    • 2002
  • 1. Introduction $\textbullet$ Immune system is an evolutionary biological system to protect innumerable foreign materials such as virus, germ cell, and etc. Immune algorithm is the modeling of this system's response that has adaptation and reliableness when disturbance occur. $\textbullet$ In this paper, Immune algorithm is applied to the Steering Controller of AGV in container yard. $\textbullet$ And then the computer simulation result from the viewpoint of yaw rate and lateral displacement is analyzed and compared with result of conventional PID controller. 2. Dynamic Modeling of AGV $\textbullet$ Dynamic modeling has high degree of freedom. But, basic assumptions of this model are that the center of gravity(CG)...

  • PDF

Attitude Stabilization Performance Improvement of the Quadrotor Flying Robot (쿼드로터형 비행로봇의 자세 안정화 성능 개선)

  • Hwang, Jong-Hyon;Hwang, Sung-Pil;Hong, Sung-Kyung;Yoo, Min-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.608-611
    • /
    • 2012
  • This paper focuses on attitude stabilization performance improvement of the quadrotor flying robot. First, the dynamic model of quadrotor flying robot was estimated through PEM (Prediction Error Method) using experimental input/output data. And attitude stabilization performance was improved by increasing the generation frequency of PWM signal from 50 Hz to 500 Hz. Also, the controller is implemented using a standard PID (Proportional-Integral-Derivative) controller augmented with feedback on angular acceleration, allowed the gains to be significantly increased, yielding higher bandwidth. Improved attitude stabilization performance is verified by experiment.

Altitude Control of a Quad-rotor System by Using a Time-delayed Control Method (시간지연 제어기를 이용한 쿼드로터 시스템의 고도제어에 대한 연구)

  • Lim, Jeong Geun;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.724-729
    • /
    • 2014
  • This paper presents the altitude control of a quadrotor system under the disturbance. The altitude is measured by an ultra sonic sensor attached at the bottom of the quadrotor system and the measured altitude data are used in the time-delayed controller. To test the robustness of the controller, a weight attached to the center of the system is dropped intentionally several times to cause disturbances to the system. Performances of the altitude control by the PID control and time-delayed control method are compared experimentally. Experimental studies are conducted to verify the outperformance of the time-delayed controller for controlling the altitude of the quadrotor system under disturbances.