• Title/Summary/Keyword: PID제어

Search Result 1,853, Processing Time 0.031 seconds

PID Control of Unstable Processes with Time Delay (시간지연을 갖는 불안정한 시스템의 PID 제어)

  • Lee, Soo-Lyong;Lee, Yun-Hyung;Ahn, Jong-Kap;Son, Jung-Ki;Ryu, Ki-Tak;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.721-728
    • /
    • 2009
  • PID control is widely used to control stable processes, however, PID control for unstable processes is less common. In this paper, systematic tuning methods are derived to tune the PID controller for unstable FOPTD(Forst Order Plus Time Delay) processes. The proposed PID controllers for set-point tracking and disturbance rejection problem are tuned based on minimizing the performance indexes (IAE, ISE, ITAE) using a real-coded genetic algorithm. Simulation example is given to illustrate the set-point tracking and disturbance rejection performance of the proposed method.

Air-Gap Control Using Optimal PID Controller for SIL-Based Near-Field Recording System (SIL 기반 근접장 기록 시스템의 간극 제어를 위한 최적화된 PID 제어 알고리즘 성능평가)

  • Shin, Won-Ho;Kim, Jung-Gon;Park, No-Cheol;Yang,, Hyun-Seok;Park, Young-Pil;Park, Kyoung-Su
    • Transactions of the Society of Information Storage Systems
    • /
    • v.5 no.1
    • /
    • pp.41-46
    • /
    • 2009
  • In SIL-based NFR servo systems, the residual error and the overshoot that are occurred in the process of the modes-witching servo which consists of approach, gap-control modes, and safety mode are reduced by using PID controller. However, the design method of conventional PID controller is not sufficient for the stable air gap control system. Therefore, the optimal PID controller using LQR manner is more useful to find the designed parameters of PID controller. In this paper, we show that the performance of the optimal PID controller is better than that of the lead-lag controller.

  • PDF

Kinematics and Robust PID Trajectory Tracking Control of Parallel Motion Simulator (병렬형 모션 시뮬레이터의 기구학적 해석과 강인 궤적추종 PID 제어기의 설계)

  • Hong, Seong-Il
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.161-172
    • /
    • 2007
  • This article suggests an inverse kinematics analysis of a two degree of freedom spatial parallel motion simulator and design methodology of the robust PID controller. The parallel motion simulator consists of a fixed base and a moving frame connected by two serial chains, with each serial chain containing one revolute joint and two passive spherical joint. First, an inverse kinematics problems are solved in order to find the joint variable necessary to bring the end effector to track the desired trajectory. Second, an inverse optimal PID controller is proposed to track trajectories in the face of uncertainty. And the $H_{\infty}$ optimality and robust stability of the closed-loop system is acquired through the PID controller. Finally numerical results show the effectiveness of the PID controller that is designed by square/linear tuning laws.

Optimal Condition Gain Estimation of PID Controller using Neural Networks (신경망을 이용한 PID 제어기의 제어 사양 최적의 이득값 추정)

  • Son, Jun-Hyeok;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.717-719
    • /
    • 2003
  • Recently Neural Network techniques have widely used in adaptive and learning control schemes for production systems. However, generally it costs a lot of time for learning in the case applied in control system. Furthermore, the physical meaning of neural networks constructed as a result is not obvious. And in practice since it is difficult to the PID gains suitably lots of researches have been reported with respect to turning schemes of PID gains. A Neural Network-based PID control scheme is proposed, which extracts skills of human experts as PID gains. This controller is designed by using three-layered neural networks. The effectiveness of the proposed Neural Network-based PID control scheme is investigated through an application for a production control system. This control method can enable a plant to operate smoothy and obviously as the plant condition varies with any unexpected accident.

  • PDF

A Position Control of EHA Systems using Adaptive PID Sliding Mode Control Scheme (적응PID 슬라이딩 모드 제어기법을 적용한 EHA 시스템의 위치제어)

  • Lee, Ji-Min;Park, Sung-Hwan;Park, Min-Gyu;Kim, Jong-Shik
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.120-130
    • /
    • 2013
  • An adaptive PID sliding mode controller is proposed for the position control of electro-hydrostatic actuator(EHA) systems with system uncertainties and saturation in the motor. An EHA prototype is developed and system modeling and parameter identification are executed. Then, adaptive PID sliding mode controller and optimal anti-windup PID controller are designed and the performance and robustness of the two control systems are compared by experiment. It was found that the adaptive PID sliding mode control system has better performance and is more robust to system uncertainties than the optimal anti-windup PID control system.

Posture Stabilization Control of QuadCopter Using Sensor Fusion and Modified PID Control (진동에 강인한 센서 융합 필터와 개선된 PID 제어 방식을 이용한 쿼드콥터의 자세 제어)

  • Cho, Youngwan;Kim, Hyun-Soo
    • Journal of IKEEE
    • /
    • v.18 no.3
    • /
    • pp.376-382
    • /
    • 2014
  • In this paper, we propose a advanced attitude PID controller and sensor fusion method robust to the vibration of the quadcopter unmanned air vehicle using four BLDC motors. When the gyro sensor and acceleration sensor are fused, a complementary filter is designed to ignore the vibrations generated by the motors and to complement the drawbacks. As a result, we obtain accurate results than using each sensor. Also, it is possible to obtain a low delay results in robust to vibration than the low-pass filter or moving average filter, which is generally used for quadcopter. And we improved D controller, which have being used for attitude control of quadcopter, to quadcopter using gyro sensor. it was confirmed that the attitude is stabilized and error is reduced By using gyro sensor output instead of variation of estimated angle in D control.

A Study on Compliance Robot Using a PID Adaptive Controller (PID 적응 제어기를 이용한 컴플라이언스 로보트에 대한 연구)

  • Kim, Seung-Woo;Kang, Moon-Sik;Koh, Jae-Won;Park, Mign-Yong;Lee, Sang-Bae
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.2
    • /
    • pp.105-110
    • /
    • 1990
  • In this paper, a compliance robot control algorithm using a PID adaptive controller is proposed. The compliance robot is suitable for the tasks in contact with environment, such as assembly operation or surface processing. A hybrid robot control method can control force and position simultaneously and two independant feedback closed loops are formed in this method. Because the compliance robot is operated in contact with environment, it is very difficult to obtain linear model of dynamics for this robot. In order to overcome this difficulty, a PID adaptive controller independant of robot dynamics is applied to the compliance robot. The proposed control algorithm for the compliance robot was analyzed and conformed by simulating the surface processing task by a two-joint robot.

  • PDF

Performance Tuning Method of Inverse Optimal PID Control for Mechanical Systems

  • Choi, Young-Jin;Chung, Wan-Kyun;Youm, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.62.1-62
    • /
    • 2001
  • This paper suggests an inverse optimal PID control design method for the trajectory tracking case of mechanical systems. Also, simple coarse/fine performance tuning laws are suggested based on the analysis for performance limitation of inverse optimal PID controller. Experimental results for a robot manipulator show the validity of our analysis for the performance tuning methods.

  • PDF

Design of PID regulator for linear time invariant MIMO system with prescribed eigenstructure (지정된 고유구조를 갖는 선형 시불변 다입출력 시스템의 PID조정기의 설계)

  • 손승걸;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.86-89
    • /
    • 1986
  • This paper presents a design methodology for a PID regulator. The parameters of the PID regulator are determined through equivalent structure to the closed-loop system whose feedback gain assigns prescribed eigenvalues of the closed-loop system and minimizes a given performance index.

  • PDF

Speed Control of Induction Motor by Means of Expert PLC in Variable load (가변부하시 전문가 PLC에 의한 유도전동기의 속도제어)

  • Park, Wal-Seo;Oh, Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.2
    • /
    • pp.54-58
    • /
    • 2002
  • PID Controller is widely used as automatic equipment for industry. However, when a system has various characters, parameter decision and tuning for accurate control is a hard task. In this paper, expert auto-tuning PID controller using PLC is presented as away of solving this problem. Expert auto tuning algorithm is based on Ziegler-Nichols step response and expert knowledge. The test of control performance is carried out in practical speed control of Induction Motor in variable load, the experimental results suggest its superior performance.