• Title/Summary/Keyword: PI3K/AKT pathway

Search Result 273, Processing Time 0.033 seconds

Globular Adiponectin Exerts a Pro-Inflammatory Effect via IκB/NF-κB Pathway Activation and Anti-Inflammatory Effect by IRAK-1 Downregulation

  • Lee, Kyoung-Hee;Jeong, Jiyeong;Woo, Jisu;Lee, Chang-Hoon;Yoo, Chul-Gyu
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.762-770
    • /
    • 2018
  • Adiponectin, a hormone produced by adipose tissue, is very abundant in plasma, and its anti- and pro-inflammatory effects are reported. However, the mechanisms of these pro- and anti-inflammatory effects are not fully defined. Herein, we evaluated the dual inflammatory response mechanism of adiponectin in macrophages. Short-term globular adiponectin (gAd) treatment induced $I{\kappa}B{\alpha}$ degradation, $NF-{\kappa}B$ nuclear translocation, and $TNF-{\alpha}$ production in RAW 264.7 cells. Polymyxin B pretreatment did not block gAd-induced $I{\kappa}B{\alpha}$ degradation, and heated gAd was unable to degrade $I{\kappa}B{\alpha}$, suggesting that the effects of gAd were not due to endotoxin contamination. gAd activated IKK and Akt, and inhibition of either IKK or Akt by dominant-negative $IKK{\beta}$ ($DN-IKK{\beta}$) or DN-Akt overexpression blocked gAd-induced $I{\kappa}B{\alpha}$ degradation, suggesting that short-term incubation with gAd mediates inflammatory responses by activating the $I{\kappa}B/NF-{\kappa}B$ and PI3K/Akt pathways. Contrastingly, long-term stimulation with gAd induced, upon subsequent stimulation, tolerance to gAd, lipopolysaccharide, and CpG-oligodeoxynucleotide, which is associated with gAd-induced downregulation of IL-receptor-associated kinase-1 (IRAK-1) due to IRAK-1 transcriptional repression. Conclusively, our findings demonstrate that the pro- and anti-inflammatory responses to gAd in innate immune cells are time-dependent, and mediated by the activation of the $I{\kappa}B/NF-{\kappa}B$ pathway, and IRAK-1 downregulation, respectively.

Valeriana jatamansi Jones Inhibits Rotavirus-Induced Diarrhea via Phosphatidylinositol 3-Kinase/Protein Kinase B Signaling Pathway

  • Zhang, Bin;Wang, Yan;Jiang, Chunmao;Wu, Caihong;Guo, Guangfu;Chen, Xiaolan;Qiu, Shulei
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1115-1122
    • /
    • 2021
  • Rotavirus (RV), as the main cause of diarrhea in children under 5 years, contributes to various childhood diseases. Valeriana jatamansi Jones is a traditional Chinese herb and possesses antiviral effects. In this study we investigated the potential mechanisms of V. jatamansi Jones in RV-induced diarrhea. MTT assay was performed to evaluate cell proliferation and the diarrhea mice model was constructed using SA11 infection. Mice were administered V. jatamansi Jones and ribavirin. Diarrhea score was used to evaluate the treatment effect. The enzyme-linked immunosorbent assay was performed to detect the level of cytokines. Western blot and quantitative reverse transcription-PCR were used to determine protein and mRNA levels, respectively. Hematoxylin-eosin staining was applied to detect the pathological change of the small intestine. TdT-mediated dUTP nick-end labeling was conducted to determine the apoptosis rate. The results showed V. jatamansi Jones promoted MA104 proliferation. V. jatamansi Jones downregulated phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) in protein level, which was consistent with the immunohistochemistry results. Moreover, V. jatamansi Jones combined with ribavirin regulated interleukin-1β (IL-1β), interferon γ, IL-6, tumor necrosis factor α, and IL-10, and suppressed secretory immunoglobulin A secretion to remove viruses and inhibit dehydration. V. jatamansi Jones + ribavirin facilitated the apoptosis of small intestine cells. In conclusion, V. jatamansi Jones may inhibit RV-induced diarrhea through PI3K/AKT signaling pathway, and could therefore be a potential therapy for diarrhea.

Inhibitory Effects of Esculetin Through the Down-Regulation of PI3K/MAPK Pathway on Collagen-Induced Platelets Aggregation (Esculetin이 PI3K/MAPK 경로 하향 조절을 통해 collagen 유도의 혈소판 응집 억제에 미치는 효과)

  • Park, Chang-Eun;Lee, Dong-Ha
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.3
    • /
    • pp.127-133
    • /
    • 2021
  • Platelet activation plays a major role in cardiovascular disorders (CVDs). Thus, disrupting platelet activation represents an attractive therapeutic target on CVDs. Esculetin, a bioactive 6,7-dihydroxy derivative of coumarin, possesses pharmacological activities against obesity, diabetes, renal failure, and CVDs. In other report, the effect of esculetin has been examined in human platelet activation and experimental mouse models, and esculetin inhibited collagen- and arachidonic acid-induced platelet aggregation in washed human platelets. However, it had no effects on other agonists such as thrombin and U46619, and its mechanism is not also clearly known. This study investigated the effect of esculetin on collagen-induced human platelet aggregation, and we clarified the mechanism. Esuletin has effects on the down regulation of PI3K/Akt and MAPK, phosphoproteins that act in the signaling process in platelet aggregation. The effects of esculetin reduced of TXA2 production and phospholipase A2 activation, and intracellular granule secretion including ATP and serotonin, leading to inhibit platelet aggregation. These results clearly clarified the effect of esculetin in inhibiting platelet activity and thrombus formation in humans.

Roles of YAP in mediating endothelial cell junctional stability and vascular remodeling

  • Choi, Hyun-Jung;Kwon, Young-Guen
    • BMB Reports
    • /
    • v.48 no.8
    • /
    • pp.429-430
    • /
    • 2015
  • Angiogenesis is a complex process involving dynamic interaction of various cell to cell interactions. Endothelial cell interactions regulated by growth factors, inflammatory cytokines, or hemodynamic stress are critical for balancing vascular quiescence and activation. Yes-associated protein (YAP), an effector of Hippo signaling, is known to play significant roles in maintaining cellular homeostasis. However, its role in endothelial cells for angiogenic regulation remains relatively unexplored. We demonstrated the critical role of YAP in vascular endothelial cells and elucidated the underlying molecular mechanisms involved in angiogenic regulation of YAP. YAP was expressed in active angiogenic regions where endothelial cell junctions were relatively loosened. Consistently, YAP subcellular localization and activity were regulated by VE-cadherin-mediated PI3K/Akt pathway. YAP thereby regulated endothelial sprouting via angiopoietin-2 expression. These results provide an insight into a model of coordinating endothelial junctional stability and angiogenic activation through YAP. [BMB Reports 2015; 48(8): 429-430]

Ethanol Extract from Cnidium monnieri (L.) Cusson Induces G1 Cell Cycle Arrest by Regulating Akt/GSK-3β/p53 Signaling Pathways in AGS Gastric Cancer Cells (AGS 위암세포에서 Akt/GSK-3β/p53 신호경로 조절을 통한 벌사상자 에탄올 추출물의 G1 Cell Cycle Arrest 유도 효과)

  • Lim, Eun Gyeong;Kim, Eun Ji;Kim, Bo Min;Kim, Sang-Yong;Ha, Sung Ho;Kim, Young Min
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.4
    • /
    • pp.417-425
    • /
    • 2017
  • Cnidium monnieri (L.) Cusson is distributed in China and Korea, and the fruit of C. monnieri is used as traditional Chinese medicine to treat carbuncle and pain in female genitalia. In this study, we examined the anti-proliferation and cell cycle arrest effects of ethanol extracts from C. monnieri (CME) in AGS gastric cancer cells. Our results show that CME suppressed cell proliferation and induced release of lactate dehydrogenase (LDH) in AGS cells by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay and LDH assay. Cell morphology was altered by CME in a dose-dependent manner. In order to identify the cell cycle arrest effects of CME, we investigated cell cycle analysis after CME treatment. In our results, CME induced cell cycle arrest at G1 phase. Protein kinase B (Akt) plays a major role in cell survival mechanisms such as growth, division, and metastasis. Akt protein regulates various downstream proteins such as glycogen synthase kinase-$3{\beta}$ (GSK-$3{\beta}$) and tumor protein p53 (p53). Expression levels of p-Akt, p-GSK-$3{\beta}$, p53, p21, cyclin E, and cyclin-dependent kinase 2 (CDK2) were determined by Western blot analysis. Protein levels of p-Akt, p-GSK-$3{\beta}$, and cyclin E were reduced while those of p53, p21, and p-CDK2 (T14/Y15) were elevated by CME. Moreover, treatment with CME, LY294002 (phosphoinositide 3-kinase/Akt inhibitor), BIO (GSK-$3{\beta}$ inhibitor), and Pifithrin-${\alpha}$ (p53 inhibitor) showed that cell cycle arrest effects were mediated through regulation of the Akt/GSK-$3{\beta}$/p53 signaling pathway. These results suggest that CME induces cell cycle arrest at G1 phase via the Akt/GSK-$3{\beta}$/p53 signaling pathway in AGS gastric cancer cells.

Effects of polysaccharide (polycan) derived from black yeast in dexamethasone-induced muscle atrophy cell model (Dexamethasone으로 유도한 근위축 세포모델에서 흑효모 배양물 유래 polycan의 근위축 개선에 대한 효과)

  • Hwang, Su-Jin;Lim, Jong-Min;Ku, Bon-Hwa;Cheon, Da-Mi;Jung, Yu Jin;Kim, Young-Suk;Oh, Tae Woo
    • Herbal Formula Science
    • /
    • v.29 no.1
    • /
    • pp.45-55
    • /
    • 2021
  • Objectives : This study was conducted to evaluate the anti-atrophic effect of polycan in dexamethasone-induced skeletal muscle atrophy in vitro model. Methods : C2C12 myoblast were differentiated into myotube by 2% horese serum medium for 6 days, and then treated polycan extract at different concentrations for 24h. The effect of dexamethasone on the induction of muscle atrophy and expression of atrophy-related genes in differentiated C2C12 myotubes using a GSH, ROS, real-time PCR, western blots analysis. Results : The results showed that Treatment with polycan (100 and 200 ㎍/㎖) noncytotoxic levels on both myoblast and myotube. Polycan decreased the ROS level overproduced with dexamethasone and improved the depletion of GSH level. Dexamethasone showed a decrease in myotube diameter, which was associated with up-regulation muscle-specific ubiquitin ligases markers, such as atrogin-1, FoxO3, myostatin and muscle RING finger-1 (MuRF1), and down-regulation of myogenin, MEF2, Myogenic regulatory factor 5, 6 and MyoD. The results showed that polycan treatment significantly dose-dependently inhibited it. Furthermore, decreased expressions of PI3K/Akt signal pathway by dexamethasone were reversed by treatment with polycan. Conclusions : Thus, polycan suppresses dexamethasone induced muscle atrophy in C2C12 myotube in vitro model through activation of PI3K/Akt pathway and protective effect of improve skeletal muscle function.

Baicalein Inhibits the Migration and Invasion of B16F10 Mouse Melanoma Cells through Inactivation of the PI3K/Akt Signaling Pathway

  • Choi, Eun-Ok;Cho, Eun-Ju;Jeong, Jin-Woo;Park, Cheol;Hong, Su-Hyun;Hwang, Hye-Jin;Moon, Sung-Kwon;Son, Chang Gue;Kim, Wun-Jae;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.213-221
    • /
    • 2017
  • Baicalein, a natural flavonoid obtained from the rhizome of Scutellaria baicalensis Georgi, has been reported to have anticancer activities in several human cancer cell lines. However, its antimetastatic effects and associated mechanisms in melanoma cells have not been extensively studied. The current study examined the effects of baicalein on cell motility and anti-invasive activity using mouse melanoma B16F10 cells. Within the noncytotoxic concentration range, baicalein significantly inhibited the cell motility and invasiveness of B16F10 cells in a concentration-dependent manner. Baicalein also reduced the activity and expression of matrix metalloproteinase (MMP)-2 and -9; however, the levels of tissue inhibitor of metalloproteinase-1 and -2 were concomitantly increased. The inhibitory effects of baicalein on cell motility and invasiveness were found to be associated with its tightening of tight junction (TJ), which was demonstrated by an increase in transepithelial electrical resistance and downregulation of the claudin family of proteins. Additionally, treatment with baicalein markedly reduced the expression levels of lipopolysaccharide-induced phosphorylated Akt and the invasive activity in B16F10 cells. Taken together, these results suggest that baicalein inhibits B16F10 melanoma cell migration and invasion by reducing the expression of MMPs and tightening TJ through the suppression of claudin expression, possibly in association with a suppression of the phosphoinositide 3-kinase/Akt signaling pathway.

Investigating herbal active ingredients and systems-level mechanisms on the human cancers (암치료를 위한 네트워크 기반 접근방식 활용 시스템 수준 연구)

  • Lee, Won-Yung
    • Herbal Formula Science
    • /
    • v.30 no.3
    • /
    • pp.175-182
    • /
    • 2022
  • Objective : This study aims to investigate the active ingredients and potential mechanisms of the beneficial herb on human cancers such as the liver by employing network pharmacology. Methods : Ingredients and their target information was obtained from various databases such as TM-MC, TTD, and Drugbank. Related protein for liver cancer was retrieved from the Comparative Toxicogenomics Database and literature. A hypergeometric test and gene set enrichment analysis were conducted to evaluate associations between protein targets of red ginseng (Panax ginseng C. A. Meyer) and liver cancer-related proteins and identify related signaling pathways, respectively. Network proximity was employed to identify active ingredients of red ginseng on liver cancer. Results : A compound-target network of red ginseng was constructed, which consisted of 363 edges between 53 ingredients and 121 protein targets. MAPK signaling pathway, PI3K-Akt signaling pathway, p53 signaling pathway, TGF-beta signaling pathway, and cell cycle pathway was significantly associated with protein targets of red ginseng. Network proximity results indicated that Ginsenoside Rg1, Acetic Acid, Ginsenoside Rh2, 20(R)-Ginsenoside Rg3, Notoginsenoside R1, Ginsenoside Rk1, 2-Methylfuran, Hexanal, Ginsenoside Rd, Ginsenoside Rh1 could be active ingredients of red ginseng against liver cancer. Conclusion : This study suggests that network-based approaches could be useful to explore potential mechanisms and active ingredients of red ginseng for liver cancer.

Cytostatic in vitro Effects of DTCM-Glutarimide on Bladder Carcinoma Cells

  • Brassesco, Maria S.;Pezuk, Julia A.;Morales, Andressa G.;De Oliveira, Jaqueline C.;Valera, Elvis T.;Da Silva, Glenda N.;De Oliveira, Harley F.;Scrideli, Carlos A.;Umezawa, Kazuo;Tone, Luiz G.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.1957-1962
    • /
    • 2012
  • Bladder cancer is a common malignancy worldwide. Despite the increased use of cisplatin-based combination therapy, the outcomes for patients with advanced disease remain poor. Recently, altered activation of the PI3K/Akt/mTOR pathway has been associated with reduced patient survival and advanced stage of bladder cancer, making its upstream or downstream components attractive targets for therapeutic intervention. In the present study, we showed that treatment with DTCM-glutaramide, a piperidine that targets PDK1, results in reduced proliferation, diminished cell migration and G1 arrest in 5637 and T24 bladder carcinoma cells. Conversely, no apoptosis, necrosis or autophagy were detected after treatment, suggesting that reduced cell numbers in vitro are a result of diminished proliferation rather than cell death. Furthermore previous exposure to 10 ${\mu}g/ml$ DTCM-glutarimide sensitized both cell lines to ionizing radiation. Although more studies are needed to corroborate our findings, our results indicate that PDK1 may be useful as a therapeutic target to prevent progression and abnormal tissue dissemination of urothelial carcinomas.

Multiple Signaling Pathways Contribute to the Thrombin-induced Secretory Phenotype in Vascular Smooth Muscle Cells

  • Jeong, Ji Young;Son, Younghae;Kim, Bo-Young;Eo, Seong-Kug;Rhim, Byung-Yong;Kim, Koanhoi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.6
    • /
    • pp.549-555
    • /
    • 2015
  • We attempted to investigate molecular mechanisms underlying phenotypic change of vascular smooth muscle cells (VSMCs) by determining signaling molecules involved in chemokine production. Treatment of human aortic smooth muscle cells (HAoSMCs) with thrombin resulted not only in elevated transcription of the (C-C motif) ligand 11 (CCL11) gene but also in enhanced secretion of CCL11 protein. Co-treatment of HAoSMCs with GF109230X, an inhibitor of protein kinase C, or GW5074, an inhibitor of Raf-1 kinase, caused inhibition of ERK1/2 phosphorylation and significantly attenuated expression of CCL11 at transcriptional and protein levels induced by thrombin. Both Akt phosphorylation and CCL11 expression induced by thrombin were attenuated in the presence of pertussis toxin (PTX), an inhibitor of Gi protein-coupled receptor, or LY294002, a PI3K inhibitor. In addition, thrombin-induced production of CCL11 was significantly attenuated by pharmacological inhibition of Akt or MEK which phosphorylates ERK1/2. These results indicate that thrombin is likely to promote expression of CCL11 via PKC/Raf-1/ERK1/2 and PTX-sensitive protease-activated receptors /PI3K/Akt pathways in HAoSMCs. We propose that multiple signaling pathways are involved in change of VSMCs to a secretory phenotype.