• 제목/요약/키워드: PHYTOPLANKTON

검색결과 1,270건 처리시간 0.029초

영산강 하구역에 위치한 세 호수의 식물플랑크톤 군집 분포 특성 (Characteristics of Distribution of Phytoplankton Communities in Three Estuarial Lakes of the Yeongsan River)

  • 조현진;나정은;이건주;이학영
    • 생태와환경
    • /
    • 제54권4호
    • /
    • pp.291-302
    • /
    • 2021
  • 본 연구는 영산강 하구에 위치한 세 호수들에서 식물플랑크톤 군집의 분포 양상 및 호소 간 군집 유사성을 확인하고 군집 구조의 차이에 영향을 미치는 요인들을 확인하고자 2014년 3월부터 2017년 11월까지 분기별 조사를 시행하였다. 조사 결과, 식물플랑크톤의 종 다양성은 영산호에서 가장 높았고, 평균 개체수는 금호호에서 가장 높았으며, 영암호는 다른 호수들에 비해 식물플랑크톤의 종수와 개체수가 낮은 것으로 확인되었다. NMDS 분석 결과, 영산호와 금호호의 식물플랑크톤 군집 분포는 뚜렷한 차이를 나타냈고, 세 호수의 식물플랑크톤 군집 분포에 영향을 미치는 요인은 수온, DO, T-N, NO3-N, 전기전도도 등으로 확인되었다. Random Forest 분석을 통해 각 호수의 식물플랑크톤 군집에 영향을 미치는 요인을 확인한 결과, 세 호수 모두 공통적으로 NO3-N의 영향력이 높았다. Indicator species analysis를 통해 확인된 각 호소별 지표종은 총 24종으로, 영산호에서 13종으로 가장 많았고, 영암호에서 2종으로 가장 적었으며, 호소별 지표종의 분류군이 구별되었다. SIMPER 분석 및 ANOSIM 결과, 영산호와 영암호의 식물플랑크톤 군집은 유사성을 나타내었고, 금호호의 경우 다른 호수와의 식물플랑크톤 군집이 다소 차이가 있는 것으로 확인되었다. 또한 각 호수의 지점별 식물플랑크톤 군집 유사성은 지점에 따라 차이가 있어 식물플랑크톤 군집 형성에 대해 연락수로의 영향력은 낮은 것으로 조사되었다.

Fluctuation Rates of Phytoplankton Assemblages by Passage through Power Plant Cooling System

  • Kang, Yeon-Shik;Lim, Ju-Hwan;Jeong, Yeon-Tae;Jeon, In-Sung
    • 환경생물
    • /
    • 제30권3호
    • /
    • pp.173-184
    • /
    • 2012
  • In order to investigate the fluctuation rates [FR] of phytoplankton after passage through a cooling system, the standing crops, chlorophyll a concentrations and carbon assimilation number of phytoplankton were surveyed at intake and outlet at Wolsong nuclear power plant [NPP] from July 2006 to June 2008. As a result, the total mean standing crops of phytoplankton were $1.0{\times}10^6\;cells\;L^{-1}$ and $7.3{\times}10^5\;cells\;L^{-1}$ at intake and outlet, respectively. The FR of phytoplankton by passage through the cooling system [PTCS] was 27.0%. Among them, the FR of microplankton and nanoplankton were 34.1% and 12.4%, respectively. In addition, the FR of diatoms and dinoflagellateswere 33.9% and 29.7%, respectively. These results showed the entrainment effects on microplankton and diatoms by PTCS were higher than those of nanoplankton and dinoflagellates. The FR of total chlorophyll a concentrations were 54.4%, and the FR of microplankton, nanoplankton and picoplankton were 58.9%, 38.5%, and 52.4%, respectively. So the entrainment effects on microplankton by PTCS were higher than those of nanoplankton and picoplankton. The mean FR of carbon assimilation number of phytoplankton was 57.6%, and the seasonal variations of FR of carbon assimilation number ranged from 47.5% to 76.8%. Our results indicated that the phytoplankton species responded differently to power plant operating conditions such as elevated temperature, chlorination, and mechanical impacts.

Nutrient Depletion and Primary Productivity in the Marginal Ice Zone of the Northwestern Weddell Sea During Austral Summer

  • Kang, Sung-Ho;Chung, Kyung-Ho;Kim, Dong-Yup;Park, Byong-Kwon;Kim, Dong-Seon
    • Journal of the korean society of oceanography
    • /
    • 제35권1호
    • /
    • pp.34-45
    • /
    • 2000
  • Spatial distributions of phytoplankton biomass and nutrients were examined to investigate the magnitude of phytoplankton blooms along the marginal ice zone (MIZ) in the northwestern Weddell Sea during austral summer of 1995. High phytoplankton biomass was associated with the MIZ in the study area. Vertical stability induced by meltwater appears to be the most important factor controlling phytoplankton biomass distribution. Nitrate concentrations are significantly depleted within the upper water column at the phytoplankton biomass maximum. The time required to attain the observed nutrient depletion was calculated from phytoplankton biomass and nitrate depletion, which ranges from 27 to 68 days in transect 4 and from 33 to 145 days in transect 3. Phytoplankton production was also calculated from nitrate depletion and time-scales of nitrate depletion, which varies from 272 to 1752 mg C m$^{-2}$ day$^{-1}$ in transect 4 and from 327 to 2648 mg C m$^{-2}$ day$^{-1}$ in transect 3. In the Southern Ocean where primary productivity shows large temporal and spatial variations, the productivity measurement from nutrient depletion can provide an average rate of primary production during phytoplankton bloom.

  • PDF

표층혼합층 생태계모델을 이용한 동해 식물플랑크톤의 계절변화 (Seasonal Variation of Phytoplankton in the East Sea Using A Surface Mixed Layer Ecosystem Model)

  • 김상우;기전풍;동옥지범
    • 한국수산과학회지
    • /
    • 제36권2호
    • /
    • pp.178-186
    • /
    • 2003
  • Seasonal variation of phytoplankton was investigated with surface mixed layer ecosystem model in the East Sea. The model consisted of four compartments (phytoplankton, zooplankton, nutrient, detritus) forced by mixed layer depths, photosynthetically available radiation and nutrient concentrations. From model results we estimated entrainment rate $2.5-4.0\;m{\cdot}day^{-1}$ to reproduce the two annual blooms, and reproduced seasonal variation of phytoplankton at southern and northern regions by the difference of surface winter mixed layer depth (MLD) using the entrainment rate value $3.0\;m{\cdot}day^{-1}$. The spring blooms in the southern and northern regions closely related to deepening of a winter surface MLD. In the southern region where MLD was shallow and phytoplankton spring bloom occurs one month in advance to the northern region where MLD was deep. The amount of light increases within the MLD during the onset of stratification and water temperature increases faster in spring in the southern region than the northern region. Decrease of phytoplankton was mainly affected by zooplankton grazing in the southern region and by nutrient exhaustion in the northern region. The fall bloom in the two regions was caused by the nutrient availability and entrainment on the phytoplankton.

Summer Pattern of Phytoplankton Distribution at a Station in Jangmok Bay

  • Lee, Won-Je;Shin, Kyoung-Soon;Jang, Pung-Guk;Jang, Min-Chul;Park, Nam-Joo
    • Ocean Science Journal
    • /
    • 제40권3호
    • /
    • pp.109-117
    • /
    • 2005
  • Daily changes in phytoplankton abundance and species composition were monitored from July to September 2003 (n=47) to understand which factors control the abundance at a station in Jangmok Bay. During the study, the phytoplankton community was mainly composed of small cell diatoms and dinoflagellates, and the dominant genera were Chaetoceros, Nitzschia, Skeletonema and Thalassionema. Phytoplankton abundance varied significantly from $6.40{\times}10^4$ to $1.22{\times}10^7$ cells/l. The initially high level of phytoplankton abundance was dominated by diatoms, but replacement by dinoflagellates started when the NIP ratio decreased to <5.0. On the basis of the N/P and Si/N ratios, the sampling periofd could be divided into two: an inorganic silicate limitation period (ISLP, $14^{th}$ $July-12^{th}$ of August) and an inorganic nitrogen limitation period (INLP, $13^{th}$ of August - the end of the study). Phosphate might not limit the growth of phytoplankton assemblages in the bay during the study period. This study suggests that phytoplankton abundance and species composition might be affected by the concentrations of inorganic nutrients (N and Si), and provides baseline information for further studies on plankton dynamics in Jangmok Bay.

Phytoplankton Community in Adjacent Waters of Ulchin Nuclear Power Plant

  • Choi, Hyu Chang;Kang, Yeon Shik;Jeon, In Sung
    • 환경생물
    • /
    • 제22권3호
    • /
    • pp.426-437
    • /
    • 2004
  • To understand the phytoplankton community in adjacent waters of Ulchin nuclear power plant (UNPP), abundance and the size fractionated $chl-\alpha$ concentrations were evaluated through seasonal interval sampling from April 2003 to February 2004. A total of 211 different phytoplankton species was observed and mean abundance of phytoplankton in each study period ranged from 244,286 to 1,221,779 cells $L^{-1}$. The contributions of microplankton $(>20\mu{m})$ to total phytoplankton abundance ranged from 42.5 to 83.6% (average 66.1%) and those of nanoplankton $(>20\mu{m})$ ranged from 16.4 to 57.5% (average 33.9%). Total chl-$\alpha$ concentrations of phytoplankton ranged from 0.52 to $2.26\mu{g}\;L^{-1}$. The contribution of chl-$\alpha$ concentrations of microplankton was higher than that of nano- and picoplankton through the study period with exception of July 2008. The results of abundances and $chl-\alpha$ concentrations suggest that microplankton has an important role in adjacent waters of UNPP. The diminution of abundances and $chl-\alpha$ concentrations of phytoplankton was observed after passage through the cooling water system, but it was gradually recovered by mixing with the ambient waters. Our results suggested that the influence of thermal discharges on phytoplankton should be restricted within narrow limits around outlet area of thermal effluents.

Spatial distribution of phytoplankton in Gamak Bay in spring, with emphasis on small phytoplankton

  • Yeongji Oh;Yoonja Kang
    • 환경생물
    • /
    • 제40권4호
    • /
    • pp.374-386
    • /
    • 2022
  • Phytoplankton communities, with emphasis on picoplankton and nanoplankton, were investigated in Gamak Bay, South Korea, where freshwater input and coastal water intrusion shape ecosystem functions. Shellfish farms and fish farms are located in the inner bay and outer bay, respectively, and tides translocate uneaten food and urine production from aquaculture farms toward the inner bay. Water masses were distinctly different based on a significantly different density between the surface and bottom layer and among three water masses, including the inner bay, outer bay, and Yeosu Harbor. Phytoplankton communities were quantified using flow cytometry and size-fractionated chlorophyll-a (chl-a) was measured. Salinity was a principal variable separating phytoplankton communities between the surface and bottom layer, whereas Si(OH)4 controlled the communities in the inner bay, and NH4+ and PO43- governed the outer bay communities. While phycocyanin-containing (PC) cyanobacteria dominated in the outer bay, phycoerythrin-containing (PE) cyanobacteria dominance occurred with cryptophyte dominance, indicating that nutrients affected the distribution of pico- and nanoplankton and that cryptophytes potentially relied on a mixotrophic mode by feeding on PE cyanobacteria. Interestingly, picoeukaryotes and eukaryotes larger than 10 ㎛ were mostly responsible for the ecological niche in the western region of the bay. Given that chl-a levels have historically declined, our study highlights the potential importance of increased small phytoplankton in Gamak Bay. Particularly, we urge an examination of the ecological role of small phytoplankton in the food supply of cultivated marine organisms.

낙동강 하구지역의 식물플랑크톤 극대역 변동에 관한 수직시뮬레이션 -II. 식물플랑크톤 극대역 변동의 수치시뮬레이션- (The numerical simulation on variation of phytoplankton maximum region in the estuary of Nakdong river -II. The numerical simulation on variation of phytoplankton maximum region-)

  • 이대인
    • 한국환경과학회지
    • /
    • 제9권5호
    • /
    • pp.375-384
    • /
    • 2000
  • It is very important to interprete and simulate the variation of phytoplankton maximum region for the prediction and control of red tide. This study was composed of two parts first the hydrodynamic simulation such as residual current and salinity diffusion and second the ecological simulation such as phytoplankton distribution according to freshwater discharge and pollutant loads. Without the Nakdong river discharge residual current was stagnated in inner side of this estuary and surface distribution of salinity was over 25psu. On the contrary with summer mean discharge freshwater stretched very far outward and some waters flowed into Chinhae Bay through the Kadok channel and low salinity extended over coastal sea and salinity front occurred. From the result of contributed physical process to phytioplankton biomass the accumulation was occurred at the west part of this estuary and the Kadok channel with the Nakdong river discharge. When more increased input discharge the accumulation band was transported to outer side of this estuary. The frequently outbreak of red tide in this area is caused by accumulation of physical processes. The phytoplankton maximum region located inner side of this estuary without the Nakdong river discharge and with mean discharge of winter but it was moved to outer side when mean discharge of the Nakdong river was increased. The variation of input concentration from the land loads was not largely influenced on phytoplankton biomass and location of maximum region. When discharge was increased phytoplankton maximum region was transferred to inner side of the Kadok channel. ON the other hand when discharge was decreased phytoplankton maximum region was transferred to inner side of this estuary and chlorophyll a contents increased to over 20$\mu\textrm{g}$/L Therefore if any other conditions are favorable for growth of phytoplankton. decreas of discharge causes to increase of possibility of red tide outbreak.

  • PDF

조석에 따른 영산강 하구의 물리적 환경 및 식물플랑크톤 크기구조: 소조기 (Tidal Influence on Physical Parameters and Phytoplankton Size Structure in Youngsan River Estuary during Neap Tide)

  • 박건우;이다혜;신용식
    • 한국환경과학회지
    • /
    • 제26권3호
    • /
    • pp.325-334
    • /
    • 2017
  • To understand the changes in physical parameters and phytoplankton size structure caused by tides, a fixed station in the Youngsan River estuary was monitored at 2-h intervals, on April 28, 2012 and August 12, 2012. No clear relationship was observed between the temperature and salinity changes and tidal levels in April. However, in August, temperature decreased during the ebb tide and increased during the flood tide, while salinity showed the opposite trend. In addition, there was no specific change in the phytoplankton biomass corresponding to tidal levels in April. In August, the total chlorophyll a and the biomass of net phytoplankton (>$20{\mu}m$) increased almost 20 times during the ebb tide and decreased during the flood tide. The biomass of nanophytoplankton (<$20{\mu}m$) showed a similar variation in response to tidal level changes. In April, the relationship between percent contributions of phytoplankton size structure and tidal levels was not clear. In August, the net phytoplankton was dominant in the early stage and nanophytoplankton was dominant in the later stage, while contribution of nanophytoplankton and net phytoplankton increased at high tide and low tide, respectively. Therefore, in April, other factors such as freshwater discharge were more important than the tide, whereas in August, when no freshwater discharge was recorded, the changes in semidiurnal tides influenced the physical parameters and phytoplankton dynamics. These results could contribute to the understanding of phytoplankton dynamics in the Youngsan River estuary.

Seasonal Variation of Phytoplankton Community Structure in NortheasternCoastal Waters off the Korean Peninsula

  • Kang, Yeon-Shik;Choi, Hyu-Chang;Noh, Jae-Hoon;Choi, Joong-Ki;Jeon, In-Seong
    • ALGAE
    • /
    • 제21권1호
    • /
    • pp.83-90
    • /
    • 2006
  • Phytoplankton community in the coastal waters off the northeastern Korean Peninsula were characterized from May 2002 to August 2003. Taxonomic composition, abundance and biomass were determined at two water depths at 10 sample sites. A total of 153 phytoplankton species including 121 diatoms, 28 dinoflagellates, 7 green algae and 7 other species were identified. The mean abundance of phytoplankton varied from 15 to 430 cells mL–1 in the surface layer and from 11 to 545 cells mL–1 in the bottom layer, respectively. Phytoplankton was more abundant in coastal stations relative to those in more open ocean. The most dominant species were marine diatoms such as Thalassionema nitzschioides, Licmorphora abbreviata, Chaetoceros affinis and Chaetoceros socialis. In addition, a few limnotic diatoms including Fragilaria capucina v. rumpens, the green alga Scenedesmus dimorphus, some marine dinoflagellates and Cryptomonas sp. appeared as dominant species. Mean concentration of total chlorophyll-a varied from 0.22 to 7.87 μg chl-a L–1 and from 0.45 to 6.79 μg chl-a L–1 in the surface and bottom layers, respectively. The contribution of phytoplankton each size-fractionated varied highly with season. The contribution of microphytoplankton to total biomass of phytoplankton in the surface and bottom layer was high in February and August 2003, and that of nano-phytoplankton was high in May 2002 in both surface and bottom layers.