• Title/Summary/Keyword: PHY structure

Search Result 22, Processing Time 0.015 seconds

Role of modifiers on the structural, mechanical, optical and radiation protection attributes of Eu3+ incorporated multi constituent glasses

  • Poojha, M.K. Komal;Marimuthu, K.;Teresa, P. Evangelin;Almousa, Nouf;Sayyed, M.I.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3841-3848
    • /
    • 2022
  • The effect of modifiers on the optical features and radiation defying ability of the Eu3+ ions doped multi constituent glasses was examined. XRD has established the amorphous nature of the specimen. The presence of various functional/fundamental groups in the present glasses was analyzed through FTIR spectra. The physical, structural and elastic traits of the glasses were explored. The variation in the structural compactness of the glass structure according to the incorporated modifier was enlightened to describe their suitability for a better shielding media. For the examined glasses, the metallization criterion value varied in the range 0.613-0.692, indicating the non-metallic character of the glasses with possible nonlinear optical applications. The computed elastic moduli expose the Li-containing glass (BTLi:Eu) to be tightly packed and rigid, which is a requirement for a better shielding channel. Furthermore, the optical bandgap and the Urbach energy values are calculated based on the optical absorption spectra. The evaluated bonding parameters revealed the nature of the fabricated glasses covalent. In addition, we investigated the radiation attenuation attributes of the prepared Eu3+ ions doped multi constituent glasses using Phy-X software. We determined the linear attenuation coefficient (LAC) and reported the influence of the five oxides Li2O3, CaO, BaO, SrO, and ZnO on the LAC values. The LAC varied between 0.433 and 0.549 cm-1 at 0.284 MeV. The 39B2O3-25TeO2-15Li2O3-10Na2O-10K2O-1Eu2O3 glass has a much smaller LAC than the other glasses.

Radix-4 Trellis Parallel Architecture and Trace Back Viterbi Decoder with Backward State Transition Control (Radix-4 트렐리스 병렬구조 및 역방향 상태천이의 제어에 의한 역추적 비터비 디코더)

  • 정차근
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.5
    • /
    • pp.397-409
    • /
    • 2003
  • This paper describes an implementation of radix-4 trellis parallel architecture and backward state transition control trace back Viterbi decoder, and presents the application results to high speed wireless LAN. The radix-4 parallelized architecture Vietrbi decoder can not only improve the throughput with simple structure, but also have small processing delay time and overhead circuit compared to M-step trellis architecture one. Based on these features, this paper addresses a novel Viterbi decoder which is composed of branch metric computation, architecture of ACS and trace back decoding by sequential control of backward state transition for the implementation of radix-4 trellis parallelized structure. With the proposed architecture, the decoding of variable code rate due to puncturing the base code can easily be implemented by the unified Viterbi decoder. Moreover, any additional circuit and/or peripheral control logic are not required in the proposed decoder architecture. The trace back decoding scheme with backward state transition control can carry out the sequential decoding according to ACS cycle clock without additional circuit for survivor memory control. In order to evaluate the usefulness, the proposed method is applied to channel CODEC of the IEEE 802.11a high speed wireless LAN, and HDL coding simulation results are presented.