• 제목/요약/키워드: PHOTOSYNTHESIS PHOTON FLUX DENSITY

검색결과 18건 처리시간 0.028초

식물공장 각종광원의 방사조건과 LED조명의 활용에 관한 연구 (A Study on the Various Light Source Radiation Conditions and use of LED Illumination for Plant Factory)

  • 윤철구;최홍규
    • 조명전기설비학회논문지
    • /
    • 제25권10호
    • /
    • pp.14-22
    • /
    • 2011
  • The artificial lights to be introduced for the plant factories is requiring the artificial light resources with minimizing the energy consumption to reduce the greenhouse gases which is a major cause of global warming, and maximizing the efficiency in photosynthesis effect light-wave range, in which the plants can be greatly grown and developed, and having the signal light-wave range for forming the light types. the best growing and developing environment for the plants has recently realized with utilizing the LED(Lighting Emitting Diode) lamps, as a environment-friendly green lamps, which can elevating the light efficiency with using only the specific light wave range. In this study, to provide the necessary lights for the full artificial light type of the plant factory, the following research/study and experiments has been conducting. experiments of the spectrum for each light sources, and LED, The intensity of illumination, Irradiance, Photosynthesis Photon Flux Density.

광 및 CO2 변화 조건에서 브로콜리(Brassica oleracea var. italica)의 전기적 신호 모니터링 (Monitoring of plant induced electrical signal of broccoli (Brassica oleracea var. italica) under changing light and CO2 conditions)

  • 박진희;김한나
    • Journal of Applied Biological Chemistry
    • /
    • 제64권4호
    • /
    • pp.351-356
    • /
    • 2021
  • 환경 조건의 변화는 식물의 물과 양분 흡수 및 광합성 정도를 변화시켜 결과적으로 식물 생육에 영향을 미친다. 변화하는 환경 조건에서 식물의 생리적 반응은 식물 줄기에 전극을 삽입해 식물유도 전기신호(PIES)로 비파괴적으로 모니터링할 수 있다. 본 연구의 목적은 CO2 증가와 광합성 광량자속밀도 PPFD 감소에 따른 식물의 반응으로 PIES를 모니터링하는 것이다. PIES는 증산과 광합성이 일어나는 낮에 증가하였고 식물 생육 기간 동안 모니터링한 CO2 농도는 PIES와 음의 상관관계를 보였다. CO2 농도 증가는 PIES를 약간 감소시켰으나 PIES에 큰 영향을 미치지 않았으며 이는 CO2 증가의 효과가 낮은 PPFD에 의해 제한되었기 때문으로 판단된다. PPFD 감소의 효과는 물과 양분 흡수가 광에 의해 즉각적으로 영향을 받지 않았기 때문에 즉시 나타나지는 않았다. 본 연구는 CO2 증가와 PPFD 감소에 의한 식물의 단기적 반응을 평가하고자 한 것이며 프롤린 함량 및 엽록소 형광은 환경 변화에 따라 유의하게 변화하지는 않았다.

보광용 LED의 광특성과 광자속밀도 특성 (A Study on the Lighting and the Photosynthetic Photon Flux Density with LED for Light Reinforcement)

  • 이붕주
    • 한국산학기술학회논문지
    • /
    • 제22권3호
    • /
    • pp.333-338
    • /
    • 2021
  • 본 연구에서는 식물생장에 필요한 빛의 파장과 세기, 광합성 광자속밀도에 대한 정확한 이해를 위해 LED의 광변화를 통해 단색광과 혼합광에 조건변화에 따른 광합성 광량자자속밀도와 조도특성 파악하였다. LED의 조도와 광합성 광자속밀도의 특성을 파악하여 LED 조명설계시 도움을 주고자 한다. 조도와 광합성 광자속밀도는 거리에 반비례하는 특성을 보이며, 조도의 특성을 기준할 때는 Green광이 중요하며, 광합성을 위한 광합성 광자속밀도는 Blue광이 중요함을 알게 되었다. 식물의 광합성 특성만을 고려할 때, 영향도는 Blue > Red > white > Green 순서로 나타내었으며, 측정거리 30[cm]을 기준으로 60[cm], 90[cm], 120[cm]의 감소수준은 각각 약 36[%], 18[%], 10[%]의 수준으로 감소됨을 알았다. Red:Blue광원의 혼합광원의 특성을 본 결과, 혼합 Red;Blue) LED 광원 비율(2:1, 3:1, 4:1)과 측정거리에 따른 값은 30[cm]에서의 측정값을 100%라 가정할 때 120[cm]에서의 측정값은 10~11[%]수준임을 확인하였다. 얻어진 결과를 통해 실내 온실의 광효율 극대화를 위한 최적 구조를 제안하고 향후 연구의 진행 방향 설정에 기여하고자 하였다.

실내식물 개발을 위한 광조건이 자생 후추등의 생육과 광합성에 미치는 영향 (Effects of Light Intensity on the Growth Characteristics and Net Photosynthesis of Piper kadzura Native to Korea for Indoor Plants)

  • 방광자;주진희
    • 한국조경학회지
    • /
    • 제32권4호
    • /
    • pp.1-6
    • /
    • 2004
  • This study was carried out to investigate the effects of light intensities on the growth and net photosynthesis of Piper kauzura under different shading levels : 0%, 50%, 70% and 90% of sunlight. Mortality rate was lowest under a 70% shading level but 0% and 90% shading levels were about 46% and 53% each respectively. Plant height was shorter and leaf size was smaller and yellowish under a 0% shading level but increased when light intensity was decreased. However, under a 90% shading level, growth of Piper kauzura was inferior to other treatments. Top fresh weight was about 11.24g under a 50% shading level and about two times higher than that observed in about 6.6g under a 90% shading level. Root fresh weight was about 7.7g under a 0% shading level and was about two times higher than that showed in about 3.84g and 3.64g under 90% and 70% respectively. Total chlorophyll content and chlorophyll a/b rate were increased when light intensity was decreased. Net Photosynthesis achieved the highest under a 70% shading level and maximum photosynthetic photon flux density was 150 molㆍm/sup -2/ㆍs/sup -1/. Therefore, growth of Piper kauzura was good under 50∼70% shading, Meaning that it is an indoor plant that could be highly utilized.

Effects of LED Light Quality of Urban Agricultural Plant Factories on the Growth of Daughter Plants of 'Seolhyang' Strawberry

  • Lee, Kook-Han
    • 한국환경과학회지
    • /
    • 제27권10호
    • /
    • pp.821-829
    • /
    • 2018
  • This study was conducted to examine the influence of Light-Emitting Diode (LED) light quality in urban agricultural plant factories on the growth and development of Seolhyang strawberry daughter plants in order to improve the efficiency of daughter plant growth and urban agriculture. LED light quality by demonstrated that above-ground growth and development were greatest for daughter plant 2. Daughter plant 1 showed the next highest growth and development, followed by daughter plant 3. Among the different qualities of LED light, the stem was thickest and growth rate of leaves was highest for R + B III (LED quality: red 660 nm + blue 450 nm/photosynthetic photon flux density (PPFD): $241-243{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and lowest for R (red $660nm/115-117{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$). Plant height, leaf width, petiole length, and the leaf growth rate were highest for W (white fluorescent lamp/$241-243{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and lowest for R + B I (red 660nm+blue 450nm/$80-82{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$). For above-ground growth and development, as the plants surpassed the seedling age, mixed light (red + blue), rather than monochromatic light (red or blue), and higher PPFD values tended to increase development. Regarding the quality of the LED light, daughter plant 2 showed the highest chlorophyll content, followed by daughter plant 1, and daughter plant 3 showed the least chlorophyll content. When the wavelength was monochromatic, chlorophyll content increased, compared to that when PPFD values were increased. Mixed light vitality was highest in daughter plant 2, followed by 1, and 3, showed increased photosynthesis when PPFD values were high with mixed light, in contrast to the results observed for chlorophyll content.

식물재배를 위한 최적LED 배열조합설계 (LED array design for optimal combination of plant grown)

  • 이성원;박세광
    • Journal of Plant Biotechnology
    • /
    • 제41권3호
    • /
    • pp.123-126
    • /
    • 2014
  • This paper is suitable for household plant factory by design and using both energy-saving LED and solar technology. Conventional household plant factory only depending on natural sunlight is sensitive for the change of external environment. Another a big problem of conventional common household plant factory is large power consumption. Recently interest in wellbeing food such as chemical-free is increased abruptly. To solve these two problems, this paper describes hybrid type of household plant. In particular, reducing the power photosynthesis photon flux density (PPFD) is kept uniform to enhance the growth of the plant. Ambient light sensor is adopted for the control of proper combination of sunlight and LED to keep PPFD constant.

지리산국립공원 조릿대의 입지환경 및 생장특성 분석과 하층식생에 미치는 영향 (Environmental Factors and Growth Properties of Sasa borealis (Hack.) Makino Community and Effect its Distribution on the Development of Lower Vegetation in Jirisan National Park)

  • 박석곤;이명훈;윤정원;신현탁
    • 한국환경생태학회지
    • /
    • 제26권1호
    • /
    • pp.82-90
    • /
    • 2012
  • 본 연구는 온대 낙엽활엽수림 임상내 조릿대군락의 입지환경요인과 그 생장특성을 밝혀내고, 조릿대군락이 하층식생 및 천연갱신에 미치는 영향을 분석하였다. 지리산국립공원 중산리지역의 낙엽활엽수림에서 조릿대군락이 분포하는 지역을 조사대상지로 설정하여 식생조사 및 환경요인을 조사했다. 이곳에서 조릿대의 생장특성으로서 조릿대의 우점도 및 높이, 잎층두께를 조사했고, 환경요인으로서 관목층과 지피층의 광합성광량자속밀도(PPFD), 토양의 화학적 특성을 조사했다. 또한 조사구에서 지피층에 출현하는 식물상, 목본의 개체수 및 높이를 조사했다. 그 결과로서 낙엽활엽수림 임상내 조릿대군락의 높이 및 잎층두께는 빛조건과 밀접한 관계지만, 특정입지환경이나 식생 등의 영향이 단순하게 조릿대 분포 및 생장특성을 결정하지 않는 것으로 판단된다. 이는 조릿대가 영양번식식물로서 복수의 지상간이 지하경으로 연결된 상태로 산림내의 불균질한 자원환경에서 광범위하게 분포할 수 있는 조릿대의 독특한 생존전략과 깊게 관련되어 있을 것이다. 또한, 밀생하고 높게 자란 조릿대는 지피층의 PPFD를 차단하는 것으로 치수발생 및 생장을 방해해 하층식생의 종다양성을 떨어뜨렸다.

Environmental Influences on SPAD Values in Prunus mume Trees: A Comparative Study of Leaf Position and Photosynthetic Efficiency Across Different Light Conditions

  • Bo Hwan Kim;Jongbum Lee;Gyung Deok Han
    • 한국환경과학회지
    • /
    • 제33권7호
    • /
    • pp.501-509
    • /
    • 2024
  • Prunus mume is a culturally significant fruit tree in East Asia that is widely used in traditional foods and medicines. The present study investigated the effects of sunlight exposure and leaf position on the photosynthetic efficiency of P. mume using SPAD values. The study was conducted at Cheongju National University of Education, Korea, under contrasting conditions between sunny (Site A) and shaded (Site B) areas on P. mume trees. Over three days, under varied weather, photosynthetic photon flux density (PPFD) and SPAD measurements were collected using a SPAD-502 plus chlorophyll meter and a smartphone PPFD meter application. The SPAD values of the 60 leaves were measured in triplicate for each tree. The results indicated that trees in sunny locations consistently exhibited higher SPAD values than those in shaded areas, implying greater photosynthetic efficiency. Moreover, leaves positioned higher in the canopy showed increased photosynthetic efficiency under different light conditions, underscoring the significance of leaf placement and light environment in photosynthetic optimization. Despite the daily sunlight variability, these factors maintained a consistent influence on SPAD values. This study concludes that optimal leaf positioning, influenced by direct sunlight exposure, significantly enhances photosynthetic efficiency in P. mume. These findings highlight the potential of integrating smart farming techniques, especially open-field smart farming technology, to improve photosynthesis and, consequently, crop yield and efficiency. The findings also highlight the need for further exploration of environmental factors affecting photosynthesis for agricultural advancement.

Effects of Soil Water Potential and Nitrogen Fertilization on Characteristics of Photosynthesis and Chlorophyll Fluorescence Induction in Schisandra chinensis Baillon

  • Seo, Young-Jin;Kim, Beung-Sung;Lee, Jong-Phil;Kim, Jong-Su;Park, Kee-Choon;Park, Chun-Geun;Ahn, Young-Sup;Cha, Seon-Woo
    • 한국토양비료학회지
    • /
    • 제48권6호
    • /
    • pp.705-711
    • /
    • 2015
  • Management of soil water and fertilization is known to primarily affect physiological properties and yield in plant. The effect of soil water potential and nitrogen application on characteristics of photosynthesis and chlorophyll fluorescence in Schisandra chinensis Baillon was investigated on a sandy loam soil. Net photosyntheis rate and transpiration rate increased as a photon flux density and was highest at -50kPa of soil water potential. Light compensation point ($1.5{\mu}molm^{-1}s^{-1}$) and dark respiration ($0.13{\mu}molCO_2m^{-1}s^{-1}$) was lowest at -50 kPa but maximum photosynthesis rate ($13.10{\mu}molCO_2m^{-1}s^{-1}$) and net apparent quantum yield ($0.083{\mu}molCO_2m^{-1}s^{-1}$) was highest at -50 kPa. As results of chlorophyll fluorescence by OJIP analysis, maximum quantum yield (Fv/Fm) of photosystem II (PSII) and PIabs was higher in treatments of -50 kPa and -60 kPa respectively, which reflects the relative reduction state of PSII. But the relative activities per reaction center such as ABS/RC and DIo/RC were low with decreasing soil water potential. Net photosyntheis rate and transpiration rate were highest at treatment of soil testing 1.0 times ($92kgha^{-1}$). Application of nitrogen resulted in high Fv/Fm, $PI_{abs}$ and low ABS/RC, DIo/RC. This result implies that -50 kPa of soil water potential and nitrogen fertilizer may improve the efficiency of photosynthesis through controlling a photosystem in Schisandra chinensis Baillon.

호염기성 미세조류 Arthrospira platensis의 폐수처리 적용을 위한 종특이성 평가 (Species Specificity Evaluation for Wastewater Treatment Application of Alkaliphilic Microalgae Arthrospira platensis)

  • 이수현;허재희;황선진
    • 한국물환경학회지
    • /
    • 제38권6호
    • /
    • pp.282-291
    • /
    • 2022
  • Since the efficiency of wastewater treatment using microalgae differs depending on the metabolic characteristics of the species, it is important to understand the characteristics of target algae prior to the application in wastewater treatment. In this study, for the application of Arthrospira platensis to wastewater treatment, which is a filamentous alkaliphilic cyanobacteria, basic species specificity was identified and the possibility of application to wastewater treatment was investigated. As a result of the species specificity investigation, the specific growth rate between pH 7.0 and 11.0 showed the highest value near pH 9 at 0.25/day. The reason for the relatively low growth(0.08/day) at pH 11 was thought to be the CA(carbonic anhydrase) enzyme that is involved in carbon fixation during photosynthesis has the highest activity at pH 8.0 to 9.0, and at pH 11, CA activity was relatively low. In addition, A. platensis showed optimal growth at 400 PPFD(photosynthetic photon flux density) and 30℃, and this means that cyanobacteria such as A. platensis have a larger number of PS-I(photosystem I) than that of PS-II(photosystem II). It was speculated that it was because higher light intensity and temperature were required to sufficiently generate electrons to transfer to PS-I. Regarding the applicability of A. platensis, it was suggested that if a system using the synergistic effect of co-culture of A. platensis and bacteria was developed, a more efficient system would be possible. And different from single cocci, filamentous A. platensis expected to have a positive impact on harvesting, which is very important in the latter part of the wastewater treatment process.