• Title/Summary/Keyword: PHEBUS FPT3

Search Result 3, Processing Time 0.009 seconds

Development of mechanistic cladding rupture model for severe accident analysis and application in PHEBUS FPT3 experiment

  • Gao, Pengcheng;Zhang, Bin;Li, Jishen;Shan, Jianqiang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.138-151
    • /
    • 2022
  • Cladding ballooning and rupture are the important phenomena at the early stage of a severe accident. Most severe accident analysis codes determine the cladding rupture based on simple parameter models. In this paper, a FRTMB module was developed using the thermal-mechanical model to analyze the fuel mechanical behavior. The purpose is to judge the cladding rupture with the severe accident analysis code. The FRTMB module was integrated into the self-developed severe accident analysis code ISAA to simulate the PHEBUS FPT3 experiment. The predicted rupture time and temperature of the cladding were basically consistent with the measured values, which verified the correctness and effectiveness of the FRTMB module. The results showed that the rising of gas pressure in the fuel rod and high temperature led to cladding ballooning. Consequently, the cladding hoop strain exceeded the strain limit, and the cladding burst. The developed FRTMB module can be applied not only to rod-type fuel, but also to plate-type fuel and other types of reactor fuel rods. Moreover, the FRTMB module can improve the channel blockage model of ISAA code and make contributions to analyzing the effect of clad ballooning on transient and subsequent parts of core degradation.

Evaluation of temperatures and flow areas of the Phebus Test FPT0

  • Koji Nishida;Naoki Sano;Seitaro Sakurai;Michio Murase
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.886-892
    • /
    • 2024
  • The cladding temperatures and axial mass distribution computed by MAAP5 were compared with their measured values in the test bundle of the Phebus Test FPT0. The computed cladding temperatures were in good agreed with the measured values in the pre-transient phase. In the transient heat-up phase, the computed temperatures were overestimated by the Baker-Just correlation in MAAP5, but the computed temperatures could simulate the subsequently measured values. The computed mass distribution in the axial direction was in qualitative agreement with the measured one for post-test fuel damage observations. The calculated flow areas of inner and outer regions in the test bundle were compared with the photographic observations. MAAP5 computed them at the height of 0.2 m where the molten pool formed was in qualitative agreement with the photographic observations. It was found that the remaining steam flow paths might be caused by the gas-liquid two-phase flow counter-current flow limitation.

Calculation of The Core Damage & FP Release Behavior for The PHEBUS FPT0 Similar to Cold Leg Break Accident Using MELCOR

  • Park, Jong-Hwa;Cho, Song-Won;Kim, Hee-Dong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.637-642
    • /
    • 1996
  • This paper presents the analysis results for the core degradation processes and the fission product release of the PHEBUS FPT0 experiment using MELCOR1.8.3. The objective of this study is to assess models associated with the core damage and fission product behavior in MELCOR. The calculation results were much improved through sensitivity studies. Thermal/hydraulic behavior in the core and the circuit was well predicted under the intact core geometry. In non-eutectic model case. the UO$_2$ dissolution model in the MELCOR always showed such a tendency that the resulting dissolved UO$_2$ mass was small at the highly oxidized condition due to the model logic. Total H$_2$ generation mass was underpredicted because the stiffner was not modeled and the liner in the shroud was not allowed to be oxidized in MELCOR. Some difficulties were found in modeling the activation product were solved by manipulating the RN input associated with the initial fission product inventory. These problem were occurred because there are no control rod model in MELCOR. Generally the fission product release ratio showed a similar trend compared with the measured data except the activation product. which have no model to simulate in MELCOR.

  • PDF