• Title/Summary/Keyword: PHC파일

Search Result 67, Processing Time 0.024 seconds

Development of the Pilot Type Machine for Automation of PHC Pile Cutting Work (PHC 파일 두부정리 자동화를 위한 파일롯타입 장비의 개발)

  • Lee Jeong-Ho;Park Sang-Jun;Jeong Myung-Hoon;Kim Young-Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.4 no.4 s.16
    • /
    • pp.173-181
    • /
    • 2003
  • During the last few years, the use of Pre-tensioned spun high strength concrete piles(PHC pile) has been gradually increased in many construction sites. Cutting work of the concrete pile is an important task to crush a part of pile head which is compressed with more than 800$\cal{kg}f/cm^2$. It is usually performed by a crusher and three to four skilled workers. Recent analysis results of the pile cutting work reveal that it frequently makes a lot of cracks which significantly reduce the strength of the pile and is labor-intensive work. The primary objective of this study is to propose conceptual designs for developing an automated pile cutting machine. It is anticipated that the development of the automated pile cutting machine would be able to bring improvements in safety, productivity, quality as well as cost saving.

Engineering Properties of PHC Pile Considering Replacement Ratio of Ground Granulated Blast-Furnace Slag and Curing Conditions (고로슬래그 미분말의 치환율 및 양생조건을 고려한 PHC파일의 공학적 특성)

  • Shin, Kyoung-Su;Lim, Byung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.5
    • /
    • pp.439-446
    • /
    • 2018
  • The PHC pile has been increasingly used due to its implementation of the top-base method, which is advantageous in high penetration rate and bearing capacity reinforcement. Typically, when a PHC pile is manufactured, high-strength mixed materials are mainly used to enhance the compressive strength. However, recent studies have been conducted to utilize ground granulated blast-furnace slag (GGBS) in terms of economic efficiency. For this reason, this study manufactured PHC pile considering the replacement ratio and curing conditions of GGBS instead of high-strength mixed materials, and further investigated the engineering properties of the PHC pile. According to the experimental results, the compressive strength of GGBS-replaced PHC pile increased by steam curing, and particularly, PHC pile with 20% replacement of GGBS under $80^{\circ}C$ steam curing condition showed a compressive strength of approximately 84MPa. Furthermore, the experimental results confirmed that more hydration products were generated under the $80^{\circ}C$ steam curing condition than that under the $20^{\circ}C$ steam curing condition, which would affect the higher density of the PHC pile as well as the increase in the compressive strength.

Technical Feasibility and Field Applicability Analysis of an All-in-one Attachment-based PHC Pile Head Cutting Robot (PHC 파일 원커팅 두부정리 자동화 로봇의 기술적 타당성 및 현장 적용성 분석)

  • Yeom, Dong-Jun;Kim, Jun-Sang;Kim, Young Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.2
    • /
    • pp.98-106
    • /
    • 2020
  • Conventional method of PHC pile head cutting work has several challenges with regard to safety, convenience, productivity, and quality. To address such problems, a prototype of the all-in-one attachment-based PHC pile cutting robot is developed(Yeom, 2018). The Primary objective of this study are to develop a final prototype of all-in-one attachment-based PHC pile cutting robot and to analyze technical feasibility and field applicability of final prototype. According to the technical feasibility and field applicability analysis result, at least 74.2% of the respondents are selected positive answer about technical feasibility of the final prototype, at least 66.6% of the respondents are selected positive answer about field applicability of the final prototype. It is expected that when deployed onsite, the final prototype can not only increase the practical use but also improvement the work safety and productivity of work at the PHC pile head cutting job site.

Development of the End-effector for Developing a PHC Pile Cutting and Crushing Machine (PHC 파일 두부정리 자동화 장비의 말단장치 개발)

  • Lee Jeong-ho;Kim Young-suk;Cho Moon-young;Kim Sung-keun;Sung Nak-won
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.531-534
    • /
    • 2004
  • Cutting work of the concrete pile is an important task to chsh a part of pile head which is compressed with more than $800kgf/cm^{2}$. It is usually performed by a crusher and three to four skilled workers. llecent analysis results of the pile cutting work reveal that it frequently makes a lot of cracks which significantly reduce the strength of the pile and is labor-intensive work. The primary objective of this study is to propose the end-effector which can effectively break PHC Pile without any longitudinal cracks before developing an automated pile cutting machine having unified grinder and crusher parts. It is anticipated that the development of the automated pile cutting machine would be able to bring improvements in safety, productivity, quality as well as cost saving.

  • PDF

Compressive Strength Characteristics of PHC Pile Substituted with α-Calcium Sulfate Hemihydrat (알파형 반수석고를 치환한 PHC파일의 압축강도 특성)

  • Shin, Kyoung-Su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.152-153
    • /
    • 2022
  • In this study, the mechanical properties of PHC Pile were investigated using α-calcium sulfate hemihydrate, an industrial by-product with excellent expansion performance. As a result, the compressive strength of PHC pile showed a tendency to be higher than that of general Portland cement (OPC).

  • PDF

Experimental Study on Segregated Layers of Materials and Compressive Strength of Concrete for Pretensioned Spun High Strength Concrete Pile (PHC 파일의 압축강도와 재료분리층에 대한 실험연구)

  • 이성로;강성수;유성원
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.16-22
    • /
    • 2001
  • Pretensioned spun high strength concrete (PHC) pile has to be quality-controlled and provided an adequate concrete cover to assure high load carrying capacity, impact resistance, economy, and durability. During spun pre-casting, the pile section is divided into several segregated layers such as laitance, paste, mortar, and concrete layers. Greater the thickness of segregated layers, more difficult it is to guarantee the capacity and the durability of PHC pile. The experimental study was performed to investigate the effects of centrifugal condition on the segregated layers of materials and the compressive strength of concrete for PHC pile. The considering factors in the test were centrifugal time and magnitude of centrifugal force. These factors have been found to have greater influence on the segregation than the concrete strength. The moderate centrifugal condition has to be considered to maintain quality assurance in the production of PHC pile, especially to provide the adequate concrete cover over its tendons.

The Study on Moldability and Mix Characteristic of IGCC Slag Aggregate as PHC-Pile (석탄 가스화 복합발전(IGCC) 슬래그잔골재의 PHC파일 성형성 및 배합특성에 관한 연구)

  • Park, Yong Kyu;Ko, Hyo Jin;Yoon, Gi Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.273-274
    • /
    • 2018
  • When IGCC Slag(CGS) aggregate was used as PHC-Pile, the moldability was lowered as the mixing ratio increased. concrete mix design. Also the mix characteristics increased the use of AD depending on the usage rate, however, require detailed consideration.

  • PDF

The Optimal Mixing Design of the PHC Piles Utilizing the Air Cooled Blast Furnace Slag as Coarse Aggregate (서냉 고로슬래그 굵은골재를 활용한 PHC 파일의 최적배합 및 물리적 특성)

  • Park, Yong-Kyu;Kim, Hyun-Woo;Kim, Seung-Il;Hur, Kab-Soo;Yoon, Ki-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.137-144
    • /
    • 2014
  • The PHC pile utilizing the air-cooled blast-furnace slag as coarse aggregate was studied. This research was progressed with the range from the indoor mixing design evaluation into the actual goods production. The physical properties of the PHC pile are determined to satisfy through the appropriate mixing design adjustments. However, it should eliminate the aggregates including CaO and MgO in SG when it utilize in an AC (autoclave) type manufacturing process. It satisfied the bending moment, shear strength, and compressive strength of KS F 4306 except the surface states of the pile.

A Study on Development of PHC pile driving force increase device on soft ground (연약지반상 PHC파일 항타력 증대장치 개발에 관한연구)

  • Kim, Jong-Gil;Lee, Young-Joo
    • Journal of Digital Convergence
    • /
    • v.18 no.10
    • /
    • pp.219-224
    • /
    • 2020
  • The purpose of this study is to develop a device to replace the pre-boring method, which is generally constructed, to prevent pile damage caused by tension cracks that reason from tension waves generated during PHC pile construction on soft ground. Tension cracks are caused by tension waves from the hammer striking during the PHC pile hitting on the soft ground, which in turn leads to faulty construction. In order to prevent the occurrence of tension waves generated during driving, apply separate driving force increasing device to prevent the generation of tension waves, and pile damage as well. Also, it is an eco-friendly construction method that reduces smoke and noise by improving construction speed, reducing construction costs, and able to small equipment when developing equipment. This development equipment is a piece of effective equipment that can pioneer the Saemangeum reclamation area, the South-east Asian construction market, where the Deep soft ground is distributed.

Safety Evaluation of Horizontal and Vertical Bolted Connection between PHC Piles Using Finite Element Analysis (유한요소해석을 통한 수평 및 수직볼트로 체결된 PHC 파일 연결부의 안전성 평가)

  • Kim, Su Eun;Kim, Sung Bo
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.2
    • /
    • pp.97-104
    • /
    • 2018
  • The safety evaluation of horizontal and vertical bolted connection between PHC piles is presented. The numerical analysis model is constructed using the commercial finite element program, ABAQUS, in which 3D solid element is used to model all the connection devices. The actual bolted connection is idealized by the contact and tie condition given in ABAQUS. Through the finite element analysis, the compression, tensile, bending and shear behaviors of PHC pile connection were analyzed. The safety factor based on Von-Mises and yield stress was calculated for the safety evaluation of each connection devices.