• Title/Summary/Keyword: PHAST RISK

Search Result 33, Processing Time 0.026 seconds

Analysis of Impact Zone of Quantitative Risk Assessment based on Accident Scenarios by Meteorological Factors (기상요소별 사고 시나리오에 따른 정량적 위험성평가 피해영향범위 분석)

  • Kim, Hyun Sub;Jeon, Byeong Han
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.12
    • /
    • pp.685-688
    • /
    • 2017
  • Using ALOHA and PHAST Program, it was modeled assuming the leakage accident scenarios of chlorine which is designated as accident preparation chemical in chemical control act. End-point distances corresponding to ERPG-2 concentrations were calculated while varying annual mean temperature, wind speed, humidity, and atmospheric stability. The calculated endpoint distance values were compared and the correlation with each meteorological factor was analyzed. And we also investigated strengths and weaknesses of ALOHA and PHAST. The results show that ALOHA has little or no correlation with annual average temperature, humidity and it has a large correlation with wind speed and atmospheric stability. In the case of PHAST, the end-point distances were correlated with all the meteorological factors such as average annual temperature, wind speed, humidity, and atmospheric stability, Among them, the effect of atmospheric stability were the largest.

A Study on Safety Improvement for Packaged Hydrogen Refueling Station by Risk Assessment (위험성 평가를 통한 패키지형 수소충전소 안전성 향상에 관한 연구)

  • KANG, SEUNGKYU;HUH, YUNSIL;MOON, JONGSAM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.635-641
    • /
    • 2017
  • In this study, the components of packaged hydrogen filling station were analyzed and risk factors were examined. Risk scenarios were constructed and quantitative risk assessments were conducted through a general risk assessment program (phast/safeti 7.2). Through the risk assessment, the range of damage according to accident scenarios and the ranking that affects the damage according to the risk factors are listed, and scope of damage and countermeasures for risk reduction are provided. The quantitative risk assessment result of the packaged hydrogen filling station through this task will be used as the basic data for improving the safety of the packaged filling system and preparing safety standards.

A Study on the extent of damage from fire accident Caused by Unloading of LPG Bulk Lorry (LPG 벌크로리 충전중 화재사고에 따른 사고피해영향범위에 관한 연구)

  • Lee, Myoung Ho;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.1-4
    • /
    • 2015
  • The study analyses secondary damage of surrounding facilities from the fire accident by Unloading of LPG Bulk Lorry. Potential risk and extent of damage from jet flame and radiation heat is estimated with PHAST-RISK v6.7 program of DNV. According to above study, supplies can predict the damage range from gas release by Unloading, and be able to respond quickly.

Consequence Analysis of the Fire & Explosion on the Flammable Liquid Handling Facility and LPG Station (제 4류 위험물 취급소 및 LPG 충전소의 화재$\cdot$폭발 피해 영향분석)

  • Lee Su-Kyung;Lee Chang-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.2 s.7
    • /
    • pp.77-84
    • /
    • 1999
  • The XX company that is handling the class IV hazardous materials, located in Bu-Chon City and the LPG station in front of the XX company which is about 20 meters apart, was chosen as the standard model for this study In carrying out the consequence analysis, PHAST and Super-Chems were used for the study and utilizing the output of the simulation, we have evaluated the consequences throughout the probit analysis and explosion overpressure analysis. In case of Acetone, the effect distance of the damage on facilities-that is the result of radiation heat flux of $37.5kW/m^2$ by TNO model-is 68.51m by PHAST model and 40.93m by Super-Chem model. The risk assessment of the LPG station which is based on the explosion resulted as the analysis of the fire ball showed the diameter 125.2m, the height 206.2m and the duration 11.28sec and the effect distance for the radiant heat flux $37.5kW/m^2$ was 137.0m.

  • PDF

Consequence Analysis for Fire and Explosion Accidents in Propylene Recovery Process (프로필렌 회수공정에서 화재 및 폭발 사고의 피해영향 해석)

  • Han, Seong-Hwan;Lee, Hern-Chang;Park, Kyoshik;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.1
    • /
    • pp.52-60
    • /
    • 2014
  • This study aims to suggest risk management plan including safety measures through hazard identification followed by consequence analysis in petrochemical plants. Consequence analysis was performed through practical release scenario by using PHAST RISK(ver. 6.7) software in the propylene recovery process(PRP). As results, consequences by fire or explosion accidents in the depropanizer zone, deethanizer zone and heat pump zone were relatively larger than other else zones among six process zones in the PRP. In the case of jet fire, it is recommendable not to install residence building within 200 m of the process zone. Additionally, process zones having large inventory or high pressure must be prevented from accidents and required to establish quick response against accidents.

The Quantitative Risk Analysis in Rail Transport of Propylene (프로필렌의 철도 수송에 따른 정량적 위험성 평가)

  • Lee, Jae-Hean;Song, Dong-Woo;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.5
    • /
    • pp.38-44
    • /
    • 2010
  • This treatise analyzed the risk of propylene transported by railroad through quantitative analysis. As a result of survey on propylene transportation route, Iksan station, Suncheon station and Jeonju station were selected as object regions those were expected to have high accident risks. This treatise deduced the scenario of accident and the occurrence rate in accordance with the type of accident possibly to be happening during propylene transportation through ETA( Event Tree Analysis), and expressed the level of personal, social risks after calculating the level of demage influencing over surroundings based on the evaluation for the expected accident damage through PHAST 6.53.

Investigation on Damage Effect Distance for High Pressure underground Flammable Gas Pipelines (지하매설 고압 가연성 가스 배관의 누출시나리오에 따른 피해 영향 거리)

  • Kim, Hyeyoung;Jung, Seungho
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.3
    • /
    • pp.33-38
    • /
    • 2018
  • Defects in piping caused by corrosion or external impact of underground piping can lead to high risk of rupture of the piping due to high pressure. Flammable gas can be immediately ignited when discharged from piping, causing a jetfire. The damage of the radiant heat not only threatens the health of the workers who work in the industry but also the health of the people living in the neighboring residential areas. It is important to prevent and prepare before an accident occurs. In this study, three types of flammable gas underground piping accident scenarios were investigated, and the ranges of influence were determined using Phast ver7.2. and finally regression models were formulated to predict the ranges using excel and Matlab.

Development of Emergency Response System for Toxic Gas Facilities Using Quantitative Risk Analysis (독성가스 시설의 정량적 위험성 평가를 이용한 비상대응시스템 구축)

  • Yoo Jin Hwan;Kim Min Seop;Ko Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.2 s.27
    • /
    • pp.43-49
    • /
    • 2005
  • Today toxic gas has various uses. If there is a release accident, the gas rapidly disperse into the atmosphere. The extent of damage due to toxic gas accident is very wide and fatal to human being. So, it is necessary for toxic gas facilities which have high risk to construct an emergency response system that prepare to toxic release and make immediate response to be possible at accident appearance. In this study accident scenario were selected and frequency analysis was executed using FTA technique. Dispersion effect of toxic gas release was analyzed using DNV company's PHAST(Ver. 6.2). Finally, an emergency response system was developed using results of quantitative risk analysis.

  • PDF

Risk Assessment for High Capacity Multiport Hydrogen Refueling Station (대용량 멀티포트 동시 충전 기반 수소충전소 안전성 평가 연구)

  • CHOONGHEE JOE;SEUNGKYU KANG;BUSEUNG KIM;KYUNGSIK LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.505-513
    • /
    • 2023
  • Hydrogen infrastructure is expanding. High-capacity hydrogen refueling stations offer advantages because they can refuel a variety of light and heavy-duty vehicles, and multi-port refueling technology is developing to reduce charging time for heavy-duty vehicles. In this study, we suggest directions to lower the risk by analyzing the risk factors for each process involved in the installation of a high-capacity multi-port hydrogen refueling station in Changwon city. We conducted both qualitative and quantitative risk assessments of the equipment to evaluate the station. A hazard and operability study was performed for qualitative risk assessment, and PHAST/SAFETI were used for quantitative risk assessment. Quantitative risk assessment was used to calculate the consequence analysis of the facility to ensure secure design prior to station development and to predict individual and societal risks in various scenarios. As a result, the station's risk level was determined to be as low as reasonably practicable.

A Study of Risk Analysis for Underground-parking of Gas Vehicle (가스 자동차의 지하 주차 시 위험성 분석)

  • Rhie, Kwang-Won;Kim, Tae-Hun;Oh, Dong-Seok;Oh, Young-Dal;Seo, Doo-Hyoun;Shin, Soo-Il
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.1
    • /
    • pp.65-73
    • /
    • 2012
  • We studied the risk analysis of fire and explosion caused by gas leak in underground-parking of gas vehicle. However, an entrance regulation of gas vehicles (H2/LPG/CNG etc.) to underground garages has not been enacted in Korea. Incase, a gas explodes in an underground parking garage placed in overcrowded residential area, such as an apartment, the scale of the damage would cause tremendous disaster. Faults of vehicle parts and management problems were evaluated by using the Failure mode and effect analysis (FMEA), which is a qualitative analysis method. The range of the damaged area by the explosion and the damage scale by the explosion pressure were analyzed by using the process hazard analysis software tool (PHAST). The study is expected to facilitate enactment of the regulation for the underground parking to restrict the gas vehicle.