• Title/Summary/Keyword: PHARMACOKINETICS

Search Result 893, Processing Time 0.025 seconds

The Effects of Laminaria japonica Diet on the Pharmacokinetics of Metformin and Glucose Absorption in Rats (흰쥐에서 다시마 식이가 메트폴민의 체내동태 및 당 흡수에 미치는 영향)

  • Choi, Han-Gon;Jang, Bo-Hyun;Rhee, Jong-Dal;Kim, Jung-Ae;Yu, Bong-Kyu;Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.3
    • /
    • pp.171-178
    • /
    • 2003
  • Drug interactions with food, on occasion, lead to serious nutritional and functional changes in the body as well as alterations of pharmacological effect. It, therefore, should be necessary to take drug interactions with food into consideration for effective and safe therapeutics. Diabetes mellitus is a heterogeneous group of disorders characterzed by abnormal glucose homeostasis, resulting in hyperglycemia, and is associated with increased risk of microvascular, macrovascular, and neuropathic complications. However, the precise mechanism of diabetes mellitus remains unclear. Three basic objectives in the care of diabetic patients are maintaining optimal nutrition, avoiding hypo- or hyperglycemia and preventing complications. Laminaria japonica is a brown macroalgae which can be used as a functional diet due to high content of diatery fiber. The purpose of this study was to investigate the effect of Laminaria japonica diet on the pharmacokinetics of metformin which are frequently used in the treatment of diabetes. Diabetic rats induced by streptozotocin were employed in this study. Blood concentrations of oral hypoglycemic agent, metformin, were measured by HPLC and resultant pharmacokinetic parameters were calculated by RSTRIP. The mechanisms of drug interaction with food were evaluated on the basis of pharmacokinetic parameters such as $k_{a},\;t_{1/2},\;C_{max},\;t_{max}$, and AUC. Administration of metformin in normal and diabetic rats treated with Laminaria japonica diet showed significant decrease in AUC, $C_{max},\;and\;k_a$, and increase in $t_{max}$, compared to those with normal diet. This might result from adsortion of metformin on components of Laminaria japonica, causing delayed absorption. The oral glucose test showed that Laminaria japonica diet could lower blood glucose level probably through either inhibiting the activity of disaccharidases, intestinal digestive enzymes, or delaying the absorption of glucose. More studies should be followed to fully understand pharmacokinetic changes of metformin caused by long-term Laminaria japonica diet.

Effect of Gongjindan, a Traditional Korean Polyherbal Formula, on the Pharmacokinetics Profiles of Donepezil in Male SDRats (2) - Single Oral Combination Treatment of Donepezil 10mg/kg with Gongjindan 100mg/kg, 1.5hr-intervals with 7-day Repeated Treatment -

  • Kwon, Oh Dae;Chung, Dae-Kyoo;Park, Soo Jin;Lee, Young Joon;Ku, Sae Kwang
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.139-155
    • /
    • 2013
  • Purpose : This study was aim to evaluate effects of pharmacodynamics and toxicity in combination therapy of donepezil with Gongjindan. The effects of Gongjindan co-administration on the pharmacokinetics (PK) of donepezil were observed after single and 7-day repeated oral co-administration with 1.5hr-intervals, to evaluate synergic pharmacodynamics and reduce toxicity of combination therapy of donepezil with Gongjindan. Materials and Methods : After 10mg/kg of donepezil treatment, Gongjindan100mg/kg was administered with 1.5hr-intervals. The plasma were collected at 30min before administration, 30min, 1, 2, 3, 4, 6, 8 and 24hrs after end of first and last 7th donepezil treatment, and plasma concentrations of donepezil were analyzed using LC-MS/MS methods. Results : Gongjindan markedly inhibited the absorption of donepezilregardless of sample time, from 30min to 8hrs after end of first 1.5hr-interval co-administration as compared with donepezil single treated rats. Especially the absorption of donepezil was significantly decreased at 2, 4, 6 and 8hrs after co-administration as compared with donepezilsingle treated rats. Accordingly, the Cmax (-26.236%), $AUC_{0-t}$(-26.02%) and $AUC_{0-inf}$(-25.90%) of donepezil in 1.5hr-interval co-administered rats were dramatically decreased as compared with donepezilsingle treated rats, respectively. However, no meaningful changes on the plasma donepezil concentrations and pharmacokinetic parameters were detected after end of last 7th 1.5hr-interval co-administration as compared with donerezil single treated rats, except for non-significant slight increases of Tmax(16.67%) detected in co-administered rats as compared with donepezil single treated rats. Conclusion : These findings are considered as direct evidences that Gongjindan also decreased oral bioavailability of donerezil as inhibited the absorptions, when they were co-administered with 1.5hr-intervals, but they may be adapted after 7 days continuous repeated l.5hr-interval co-administration.

Validation of LC-MS/MS Method for Determination of Rabeprazole in Human Plasma : Application of Pharmacokinetics Study (인체 혈장중 라베프라졸의 정량을 위한 LC-MS/MS 분석법 검증 및 단일 용량 투여에 의한 약물동태 연구)

  • Tak, Sung-Kwon;Seo, Ji-Hyung;Ryu, Ju-Hee;Choi, Sang-Joon;Lee, Myung-Jae;Kang, Jong-Min;Lee, Jin-Sung;Hong, Seung-Jae;Yim, Sung-Vin;Lee, Kyung-Tae
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.1
    • /
    • pp.73-78
    • /
    • 2009
  • A simple LC-MS/MS method of rabeprazole in human plasma was developed and validated. Rabeprazole and Internal standard (I.S), omeprazole, were extracted from human plasma by liquid liquid extraction, chromatographic separation of rabaprazole in plasma was achieved at $45^{\circ}C$ with a Shiseido UG120 $C_{18}$ column and methanol-10 mM ammonium acetate buffer (pH 9.42 with ammonium water), as mobile phase. Rabeprazole produced a protonated precursor ion [$(M+H)^+$] at m/z 360.10 and corresponding product ion at m/z 242.21. Internal standard produced a protonated precursor ion [$(M+H)^+$] at 346.09 and corresponding product ion at m/z 198.09. This method showed linear response over the concentration range of $1{\sim}500\;ng/mL$ with correalation coefficient greater than 0.99. The lower limit of quantitation (LLOQ) using 0.2 mL plasma was 1 ng/mL, which was sensitive enough for pharmacokinetics studies. The method was specific and validated with a limit of quantitation of 1 ng/mL. The intra-day and inter-day precision and accuracy were acceptable for all samples including the LLOQ. The applicability of the method was demonstrated by analysis of plasma after administration of a single 10 mg dose to 36 healthy subject. From the plasma rabeprazole concentration versus time curves, the mean $AUC_t$ (The area under the plasma concentration-time curve from time 0 to 12 hr ) was $691.36{\pm}321.88\;ng{\cdot}hr/mL$, $C_{max}$ (maximum plasma drug concentration) of $353.21{\pm}131.52\;ng/mL$ reached $3.4{\pm}1.1\;hr$ after adiministration. The mean biological half-life of rabeprazole was $1.37{\pm}0.75\;hr$. Based on the results, this simple method could readily be used in pharmacokinetics studies.

Bioequivalence of MelaxTM Capsule to MobicTM Capsule (Meloxicam 7.5 mg) (모빅 캡슐(멜록시캄 7.5 mg)에 대한 멜락스 캡슐의 생물학적동등성)

  • Lee, Ye-Rie;Yeom, Seung-Bock;Ko, Youn-Jung;Ko, Jung-Kil;Kim, Ho-Hyun;Lee, Hee-Joo;Lee, Kyung-Ryul
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.5
    • /
    • pp.413-418
    • /
    • 2004
  • A bioequivalence of $Melax^{TM}$ capsules (Chong Kun Dang Pharm., Korea) and $Mobic^{TM}$ capsules (Boehringer Ingelheim Korea) was evaluated according to the guideline of Korea Food and Drug Administration (KFDA). Single 15 mg dose of meloxicam of each medicine was administered orally to 24 healthy male volunteers. This study was performed in a $2\;{\times}\;2$ crossover design. Concentrations of meloxicam in human plasma were monitored by a high-performance liquid chromatography. $AUC_t$ (the area under the plasma concentration-time curve from time zero to 72 hr) was calculated by the linear trapezoidal rule method. $C_{max}$ (maximum plasma drug concentration) and $T_{max}$ (time to reach $C_{max}$) were compiled from the plasma concentration-time data. Analysis of variance was performed using logarithmically transformed $AUC_t$ and $C_{max}$. No significant sequence effect was found for all of the bioavailability parameters. The 90% confidence intervals of the $AUC_t$ ratio and the $C_{max}$ ratio for $Melax^{TM}/Mobic^{TM}$ were 0.95 - 1.04 and 0.98 - 1.14, respectively. This study demonstrated a bioequivalence of $Melax^{TM}$ and $Mobic^{TM}$ with respect to the rate and extent of absorption.

Pharmacokinetics and Lymphatic Delivery of Oligopeptide after Intramuscular Injection of Oligopeptide-bearing Liposomes to Rats (흰쥐에서 올리고펩타이드 함유 리포솜의 근육주사후 체내동태 및 임파이행)

  • Shin, Dae-Hwan;Cho, Byung-Suk;Choi, Kyu-Seok;Song, Suk-Gil;Lee, Chong-Kil;Chung, Youn-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.3
    • /
    • pp.191-197
    • /
    • 2008
  • The purpose of the present study was to examine the pharmacokinetics and lymphatic delivery of the oligopeptide, a model peptide of X antigen epitope peptides, after the intramuscular administration of the peptide-bearing liposomes in rats. $^{14}C$-labelled peptide was used as a tracer to analyze the peptide levels in plasma, bile, urine, tissue homogenates, and lymph nodes (superior cervical nodes, brachial nodes and superior mesenteric nodes). Model peptide rapidly disappeared from the plasma by 30 min (${\alpha}$ phase) after i.v. administration, which was followed by the late disappearance. The apparent plasma half-lives ($t_{1/2({\alpha}),app}$) of the peptide at the ${\alpha}$ phase when administered at a dose of 0.2-1.0 mg/kg were about 5 min. The maximum plasma concentration ($C_{max}$) was $1.52\;{\mu}g/mL$, after the i.m. administration of the peptide at a dose of 1.0 mg/kg. The bioavailability, which was calculated from the time zero to last quantitative time, of the i.m. administered peptide was over 60%. Of the various tissues tested, the peptide was mainly distributed in the kidney after the i.m. administration. The peptide levels in the kidney 3 hr after the i.m. administration were higher than those of maximum plasma concentration ($C_{max}$). The cumulative amounts of the peptide found in the urine 72 hr after the administration of 1.0 mg/kg were 2-folder higher than those in the bile, suggesting that the peptide is mostly excreted in the urine. Moreover, the concentrations of the peptide in the lymph nodes were as high as that of the plasma and the tissues. In conclusion, the peptide concentration in the lymph nodes was maintained by 24 hr after the i.m. administration of the peptide-bearing liposomes.

Bioequivalence of Daewoong AlendronateTM Tablet to FosamaxTM Tablet (Sodium Alendronate 70 mg) (포사맥스 정(알렌드론산나트륨 70 mg)에 대한 대웅 알렌드로네이트 정 70 mg의 생물학적동등성)

  • Lee, Ye-Rie;Jung, Sun-Koung;Yang, Seoung-Kwon;Choi, Ki-Ho;Shin, Yong-Chul;Jeon, Hyeong-Gyu;Kang, Seung-Woo;Lee, Hee-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.2
    • /
    • pp.137-142
    • /
    • 2006
  • A bioequivalence of Daewoong $Alendronate^{TM}$ (Daewoong Pharmaceutical Co., Ltd., Korea) and $Fosamax^{TM}$ tablets (MSD Korea) was evaluated according to the guideline of Korea Food and Drug Administration (KFDA). A single 70 mg dose of sodium alendronate of each medicine was administered orally to 56 healthy male volunteers. This study was performed in a $2\;{\time}\;2$ crossover design. Concentrations of alendronate in the urine were monitored by a high-performance liquid chromatography (HPLC). $A_{et}$ (cumulative urinary excreted amount from time 0 to last sampling interval) was calculated by the accumulation of the urinary excreted alendronate. $U_{max}$ (maximum urinary excretion rate) and $T_{max}$ (time to reach $U_{max}$) were compiled from the urinary excretion rate - time data. Analysis of variance was performed using logarithmically transformed $A_{et}$ and $U_{max}$. No significant sequence effect was found for all of the bioavailability parameters. The 90% confidence intervals of the $A_{et}$ and $U_{max}$ for Daewoong $Alendronate^{TM}/Fosamax^{TM}$ were 0.89-1.12 and 0.82-1.02, respectively. This study demonstrated the bioequivalence of Daewoong $Alendronate^{TM}$ and $Fosamax^{TM}$ with respect to the rate and extent of absorption.

Pharmacokinetics of Recombinant Human Epidermal Growth Factor (DWP401) in Rats (재조합 인간 상피세포성장인자(DWP401)의 흰쥐에서의 약물동태)

  • Chung, Joo-Young;Koh, Yeo-Wook;Nam, Kwon-Ho;Cho, Jae-Youl;Park, Seung-Kook;Yu, Young-Ho;Kim, Jae-Hwan;Han, Kun;Park, Myung-Hwan;Shim, Chang-Koo
    • YAKHAK HOEJI
    • /
    • v.41 no.3
    • /
    • pp.328-334
    • /
    • 1997
  • Pharmacokinetics of DWP401, a recombinant human epidermal growth factor (rhEGF), was studied using radioimmunoassay (RIA) and $^{125}I$-DWP401 in rats. When DWP401 was adm inistered i.v. at doses of 50 and 500 mcg/kg, the plasma DWP401 disappeared biiexponentially with terminal half life of 4.7 and 92.8 min. The $C_{max}$ and $T_{max}$ after s.c. administration of ti at doses of 50 and 500 ${\mu}g$/kg were determined to be 23.6 and 17.5 ng/ml at 50 ${\mu}g$/kg, and 261.4 ng/ml and 36.8 min, respectively. Both the total urinary and biliary recoveries of intact DWP401 2343 very low (<0.4%), probably due to its extensive degradation in the body. the concentration ratio of DWP401 between the organ and plasma decreased especially in the liver and kidney as the dose and time after the dose increased. For example, the liver/plasma and kidney/plasma concentration ratio of DWP401 at 2.5 min after i.v. doses of 50 ${\mu}g$/kg were comparable and much larger than unity. But, the ratio at 2.5 min after i.v. doses of 500${\mu}g$/kg was much larger in the kidney that in than in the liver. These results suggest that the systemic administration of DWP401 might be subject to rapid and extensive clearance from circulation within several hour after main distrbution to liver and kidney.

  • PDF

Effect of Cimetidine on Pharmacokinetics of Theophylline in Healthy Korean Volunteers (건강한 한국인 자원자에서 theophylline 약동학에 미치는 Cimetidine의 효과)

  • Kwon, Jun-Tack;Chai, Seok;Sohn, Dong-Ryul;Yom, Yoon-Ki;Kim, Hyung-Ki
    • Korean Journal of Clinical Pharmacy
    • /
    • v.17 no.1
    • /
    • pp.13-18
    • /
    • 2007
  • The purpose of the present study was to investigate the effect of cimetidine on theophylline pharmacokinetics in Korean healthy normal subjects. Eight subjects were enrolled and open label, two period cross-over study was conducted without significant drug related adverse reactions. Cimetidine seemed that significantly inhibited the metabolism of theophylline, oral clearance decreased significantly when cimetidine was coadministered. Coadministered cimetidine increased $AUC_t$ and $C_{max}$ of theophylline. All subjects were genotyped using PCR-RFLP methods to evaluate the differences in metabolic capacity in accordance with CYP1A2 genotypes, but no mutant genotype was found. This suggests that metabolic capacities were not significantly affected by CYP1A2 genotypes among subjects. In conclusion, disposition of theophylline was significantly affected by coadministered cimetidine. Further evaluation with well-designed drug interaction study in accordance with various genotype of CYP1A2 is needed.

  • PDF

Pharmacokinetic and Pharmacodynamic Interaction between Metformin and (-)-Epigallocatechin-3-gallate

  • Ko, Jeong-Hyeon;Jang, Eun-Hee;Park, Chang-Shin;Kim, Hyoung-Kwang;Cho, Soon-Gu;Shin, Dong-Wun;Yi, Hyeon-Gyu;Kang, Ju-Hee
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.4
    • /
    • pp.298-303
    • /
    • 2009
  • (-)-Epigallocatechin-3-gallate (EGCG), a major flavonoid in green tea has multiple health benefits including chemoprevention, anti-inflammatory, anti-diabetic, and anti-obesity effects. In connection with these effects, EGCG can be a candidate to help the treatment of metabolic diseases. Metformin is a widely used anti-diabetic drug regulating cellular energy homeostasis via AMP-activated protein kinase (AMPK) activation. Therefore, the combination of metformin with EGCG may have additive or synergistic effects on treatment of type 2 diabetes. Nevertheless, there is no report for the pharmacokinetic and/or pharmacodynamic interaction of EGCG with metformin. Here, we evaluated the pharmacokinetic and pharmacodynamic interaction between metformin and EGCG in rats. Pharmacokinetics parameters of metformin were measured after oral administration of metformin in rats pre-treated with EGCG (10 mg/kg) or saline for 7 days. The results showed that there is no significant difference in pharmacokinetic parameters between saline control and EGCG-treated group. In addition, the hepatic AMPK activation by metformin in EGCG-treated rats was also similar to the control. The lack of additive effects of EGCG on AMPK activation or intracellular uptake of metformin was also evaluated in cells in the presence or absence of EGCG. Treatment of HepG2 cells with EGCG inhibited the metformin-induced AMPK activation. Combined results suggested that EGCG has no effect on the pharmacokinetics of metformin but may contribute to metformin action.

DEVELOPMENTAL PSYCHOPHARMACOLOGY - DEVELOPMENTAL PHARMACOKINETICS, PHARMACODYNAMICS AND PHARMACOGENETICS - (발달학적 정신약물학 - 발달학적 약동학, 약역학 및 약물유전학 -)

  • Cho, Soo-Churl
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.14 no.2
    • /
    • pp.157-173
    • /
    • 2003
  • The history of pediatric psychopharmacology is very short and the research on safety, efficacy and side effects is preliminary and long-term effect on growth and maturation is not well known yet. Clinical findings have shown that the responses to antidepressants, antipsychotics, CNS stimulants and steroids in children and adolescents might be different from adult populations. Based on these findings, this paper reviewed three issues, Firstly, in developmental pharmacokinetics. the author discussed the developmental factors affecting drug absorption, distribution, protein-binding, metabolism and excretion. Secondly, in developmental pharmacodynamics, developmental characteristics of dopamine, serotonin, norepinephrine receptors and their clinical implications were reviewed. Lastly, in pharamcogenetic part, the clinical utility of pharmacogenetics, pharmacokinetic aspects of pharmacogenetics, the pharmacodynamic aspects of pharmacogenetics, the association studies of dopamine-related alleles in neuropsychiatric disorders such as attention-deficit hyperactivity disorders or Tourette’s disorders, pharmacogenetic studies dopamine-related alleles and the pharmacogenetic studies of serotonin-related alleles. Based on these preliminary research, future pharmacogenetic applications in childhood and adolescent psychiatry were also discussed.

  • PDF