• Title/Summary/Keyword: PHARMACOKINETICS

Search Result 891, Processing Time 0.028 seconds

Pharmacokinetic Interaction between Verapamil and Tamoxifen in Rats (베라파밀과 타목시펜의 약물동태학적 상호작용)

  • Seol, Hyo-Chan;Choi, Jun-Shik
    • YAKHAK HOEJI
    • /
    • v.49 no.5
    • /
    • pp.380-385
    • /
    • 2005
  • The aim of this study is to investigate the effects of verapamil on the pharmacokinetics of tamoxifen following oral administration of tamoxifen with verapamil to rats. Tamoxifen (10 mg/kg) was administered orally in the presence or absence of verapamil (1, 3 or 6 mg/kg). Compared to the control group (given tamoxifen alone), the presence of verapamil significantly (p<0.05 by 1 mg/kg, p<0.01 by 3 and 6 mg/kg) increased the areas under the plasma concentration-time curve (AUC) and the peak concentrations ($C_{max}$) of tamoxifen. Consequently, the relative bioavailability ($RB\%$) of tamoxifen with verapamil was 1.6-2.1 fold higher than that of the control. But the time to reach peak concentration ($T_{max}$) and the terminal half-life ($t_{1/2}$) of tamoxifen were not altered significantly in the presence of verapamil. The increased AUC and $C_{max}$ of tamox­ifen in the presence of verapamil might be associated with the inhibition by verapamil of the P-glycoprotein and the first­pass metabolizing enzyme CYP3A4 in small intestinal mucosa. The drug interaction should be taken into consideration when tamoxifen is used to the patient with verapamil in the clinical setting.

Albumin Release from Biodegradable Hydrogels Composed of Dextran and Poly(Ethylene Glycol) Macromer

  • Kim, In-Sook;Jeong, Young-Il;Kim, Do-Hoon;Lee, Yun-Ho;Kim, Sung-Ho
    • Archives of Pharmacal Research
    • /
    • v.24 no.1
    • /
    • pp.69-73
    • /
    • 2001
  • Biodegradable hydrogels based on glycidyl methacrylate dextran (CMD) and dimethacrylate poly(ethylene glycol) (DMP) were proposed for colon-specific drug delivery. GMD was synthesized by coupling of glycidyl methacylate with dextran in the presence of 4-(N, N-dimethylamino)pyridine (DMAP) using dimethylsulfoxide as a solvent. Methacrylate-terminated poly (ethylene glycol) (PEG) macromer was prepared by the reaction of PEG with methacryloyl chloride. CMD/DMP hydrogels were prepared by radical polymerization of phosphate buffer solution (0.1 M, pH 7.4) of GMD and DMP using ammonium peroxydisulfate (APS) and UV as initiating system. The synthetic GMD, DMP and GMD/DMP hydrogels were characterized by fourier transform infrared (FT-lR) spectroscopy. The FITC-albumin loaded hydrogels were prepared by adding FITC-albumin solution before UV irradiation. Swelling capacity of GMD/DMP hydrogels was controlled not only by molecular weight of dextran, but also by incorporation ratio of DMP Degradation of the hydrogels has been studied in vitro with dextranase. FITC-albumin release from the GMD/DMP hydrogels was affected by molecular weight of nextran and the presence of dextranase in the release medium.

  • PDF

Effects of Oral Rutaecarpine on the Pharmacokinetics of Intravenous Chlorzoxazone in Rats

  • Bista, Sudeep R.;Lee, Sang-Kyu;Thapa, Dinesh;Kang, Mi-Jeong;Seo, Young-Min;Kim, Ju-Hyun;Kim, Dong-Hyeon;Jahng, Yurng-Dong;Kim, Jung-Ae;Jeong, Tae-Cheon
    • Toxicological Research
    • /
    • v.24 no.3
    • /
    • pp.195-199
    • /
    • 2008
  • It has been reported that hepatic microsomal cytochrome P450(CYP) 2E1 is responsible for the metabolism of chlorzoxazone(CZX) to 6-hydroxychlorzoxazone. The present study was undertaken to assess the possible interaction of rutaecarpine, an alkaloid originally isolated from the unripe fruit of Evodia rutaecarpa, with CZX. Male Spraque-Dawley rats were administered with 80 mg/kg/day of oral rutaecarpine for three consecutive days. Twenty four hr after the pre-treatment with rutaecarpine, the rats were treated with 20 mg/kg of intravenous CZX. Rat hepatic microsomes isolated from rutaecarpine-treated rats showed greater(50% increase) activity of p-nitrophenol hydroxylase(a marker of CYP2E1) when compared with the control rats. Compared with control rats, the AUC of CZX was significantly smaller(84% decrease) possibly due to significantly faster CL(646% increase) in rats pretreated with rutaecarpine. This could be, at least partially, due to induction of CYP2E1 by rutaecarpine.

Effects of Rutaecarpine on the Pharmacokinetics of Caffeine and Its Three Metabolites in Rats

  • Seo, Young-Min;Noh, Keum-Han;Kong, Min-Jeong;Lee, Dae-Hun;Kang, Mi-Jeong;Jahng, Yurng-Dong;Kang, Won-Ku;Jeong, Byeong-Seon;Jeong, Tae-Cheon
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.243-247
    • /
    • 2011
  • Rutaecarpine, an alkaloid originally isolated from the unripe fruit of Evodia rutaecarpa, has been shown to be anti-inflammatory. In the present study, a possible interaction between rutaecarpine and caffeine was investigated in male Sprague Dawley rats. Twenty four hr after the oral pretreatment with rutaecarpine at 80 mg/kg for three consecutive days, rats were treated intravenously with 10 mg/kg of caffeine. Compared with control rats, the pharmacokinetic parameters of caffeine in rutaecarpine-pretreated rats were significantly changed, possibly due to the rapid metabolism. The production of three metabolites of caffeine (i.e., paraxanthine, theobromine and theophylline) was also significantly changed in rats pretreated with rutaecarpine. The present results suggest that oral rutaecarpine would change the intravenous pharmacokinetic characteristics of caffeine.

Pharmacokinetics of Sultadiazine/Trimethoprim from Bronchial Secretion in Pigs. (돼지의 기관분비에서 Sulfadiazine과 Trimethoprim의 약물동태학)

  • 김길수;윤효인
    • Journal of Veterinary Clinics
    • /
    • v.14 no.1
    • /
    • pp.42-47
    • /
    • 1997
  • 돼지의 호흡기감염은 양돈산업에서 과밀한 사육으로 인하여 발생되는 주요한 질환중의 하나이다. 호흡기감염을 일으키는 병원체들은 주로 기관분비물과 점액에 상주하는 것으로 알려져 있다. 그러므로 호흡기감염의 치료를 위하여 기관분비물내에 항균약제의 농도는 적절하게 유지되어져야 한다. sulfadiazine(SDZ)과 trimethoprim(TMP)의 혼합제제는 전세계적으로 돼지의 호흡기감염의 치료에 널리 사용되어지고 있으나, 기관분비물에서 약물의 동태학적 특성에 관한 연구는 거의 찾아 볼 수가 없었다. 본 연구는 돼지의 좌측전대정맥으로 SDZ/TMP혼합제제를 일회 투여한 후 형성되는 약물동태학적 매개변수를 알아보기 위하여 실시되었다. 혈장과 기관분비물에서 SDZ/TMP농도는 HPLC (High Performance Liquid Chromatography)로 측정하여 약물동태학적 매개변수를 산출하였다. 혈장에서 SDZ와 TMP의 약물동태학적 매개변수는 2-compartment 와 1-compartment모델에 적합하였다. 혈장내 TMP의 반감기(0.90$\pm $0.06시간)가 SDZ(7.25$\pm $1.09시간)에 비하여 매우 짧은 점이 주요한 차이점으로 볼 수 있었으며, 더욱이 투여후 8시간이후에서는 측정이 되지 않았다. 기관분비물에서 SDZ의 농도는 전체 실험기간(0.5∼32시간)동안 거의 일정하게 유지되었고, 16시간후에서는 혈장농도보다 높은 수준을 나타내었다. TMP농도는 투여후 2∼3시간에서 혈장농도보다 높게 유지되었다. 이러한 결과를 토대로 호흡기감염의 처치와 예방에 있어서 약물의 용량 및 투여빈도를 결정하는데 응용되어 질 수 있을 것이다.

  • PDF

Characterization of Preclinical in Vitro and in Vivo Pharmacokinetic Properties of KPLA-012, a Benzopyranyl 1,2,3-Triazole Compound, with Anti-Angiogenetic and Anti-Tumor Progressive Effects

  • Nam, So Jeong;Lee, Taeho;Choi, Min-Koo;Song, Im-Sook
    • Mass Spectrometry Letters
    • /
    • v.9 no.2
    • /
    • pp.61-65
    • /
    • 2018
  • KPLA-012, a benzopyranyl 1,2,3-triazole compound, is considered a potent $HIF-1{\alpha}$ inhibitor based on the chemical library screening, and is known to exhibit anti-angiogenetic and anti-tumor progressive effects. The aim of this study was to investigate the pharmacokinetic properties of KPLA-012 in ICR mice and to investigate in vitro characteristics including the intestinal absorption, distribution, metabolism, and excretion of KPLA-012. The oral bioavailability of KPLA-012 was 33.3% in mice. The pharmacokinetics of KPLA-012 changed in a metabolism-dependent manner, which was evident by the low recovery of parent KPLA-012 from urine and feces and metabolic instability in the liver microsomes. However, KPLA-012 exhibited moderate permeability in Caco-2 cells ($3.1{\times}10^{-6}cm/s$) and the metabolic stability increased in humans compared to that in mice (% remaining after 1 h; 47.4% in humans vs 14.8% in mice). Overall, the results suggest that KPLA-012 might have more effective pharmacokinetic properties in humans than in mice although further studies on its metabolism are necessary.

Pharmacokinetics of Diltiazem and Deacetyldiltiazem after Intravenous Administration of Diltiazem in Rabbits with Folate-induced Renal Failure (엽산으로 유도된 신장장애 가토에서 정맥투여시 딜터아젬과 활성대사체인 데아세델딜터아젬의 약물동태)

  • Choi, Jun Shik;Burm, Jin Pil
    • Korean Journal of Clinical Pharmacy
    • /
    • v.10 no.3
    • /
    • pp.120-124
    • /
    • 2000
  • Diltiazem inhibits calcium channels and leads to vascular smooth muscle relaxation and negative inotroic and chronotropic effects in the heart. Diltiazem (DTZ) is almost completely absorbed after oral administration, but its bioavailability is reduced because of considerable hepatic first-pass metabolism. The main metabolite of DTZ is deacetyldiltiazem. The purpose of this study was to report the pharmacokinetic changes of DTZ and its metabolite, deacetyldiltiazem (DAD) after intravenous administration of diltiazem to control rabbits and rabbits with mild and medium folate-induced renal failure (FIRRs). The area under the plasma concentration-time curves (AUC) of DTZ were significantly increased in mild and medium FIRRs. The metabolite ratio of the DAD to DTZ were significantly decreased in mild and medium FIRRs. The elimination rate constant $(\beta)$ and total body clearances (CLt) of DTZ were significantly decreased in mild and medium FIRRS. These findings suggest that the hepatic metabolism of diltiazem was inhibited and CLt and ${\beta}$ of DTZ were significantly decreased in mild and in rabbits with medium folate-induced renal failure.

  • PDF

Pharmacokinetic Interaction Between Diltiazem and Naringenin in Rabbits (나린제닌과 딜티아젬과의 약물동태학적 상호작용)

  • Seol, Hyo-Chan;Choi, Jun-Shik
    • Korean Journal of Clinical Pharmacy
    • /
    • v.16 no.1
    • /
    • pp.57-62
    • /
    • 2006
  • The purpose of this study was to investigate the effect of naringenin, one of flavonoids, on the pharmacokinetics and bioavailability of diltiazem (15 mg/kg) after oral administration of diltiazem with or without naringenin (2.0, 10 and 20 mg/kg) in rabbits. Coadministration of naringenin increased the absorption rate constant $(K_a)$, the area under the plasma concentration-time curve (AUC) and peak concentration $(C_{max})$ of diltiazem compared to the control group, but only significantly (p<0.05) by 10mg/kg of naringenin coadministration. The absolute bioavailability (AB%) of diltiazem by coadministration ranges from 7.8% to 10.3%, increased more than control (7.2%), and relative bioavailability (RB%) of diltiazem is increased from 1.08- to 1.43-fold. Coadministration caused on significant changes in the terminal half-lives $(t_{1/2})$ and the time to reach the peak concentration $(T_{max})$ of diltiazem. On the other hand, coadministration of naringenin increased the AUC desacetyldiltiazem, significantly at the dose of 10mg/kg. But the metabolite ratio (MR) was decreased, significantly at 10mg/kg of naringenin. Based on these results, we can make a conclusion that the increased bioavailability and the significant changes of these pharmacokinetic parameters might be due to naringenin, which possess the potency to inhibit the metabolizing enzyme (CYP3A4) in the liver and intestinal mucosa, and also inhibit the P-glycoprotein efflux pump in the intestinal mucosa.

  • PDF

Pharmacokinetics rind Tissue Distribution of a Recombinant truman Erythropoietin, GC-rhEPO (유전자 재조합 사람형 erythropoietin, GC-rhEPO의 약물동태 및 조직분포)

  • 김선돈;한성규;이호성;김성남;정원휘;백대현;조은성;허재욱;류판동
    • Biomolecules & Therapeutics
    • /
    • v.8 no.2
    • /
    • pp.171-178
    • /
    • 2000
  • To evaluate the pharmacokinetic properties and tissue distribution of a newly developed recombinant human erythropoietin (GC-rhEPO), we analyzed the plasma and tissue levels of erythropoietin by an ELISA after intravenous (IV) and subcutaneous (SC) adminstration to the male rats at the doses of 20, 100, 500 or 2,500 unit/kg. After single IV bolus injection of GC-rhEPO, the plasma concentration was rapidly increased and decreased with two phases with half-lives of 13.4 min and 2.94 hours. AUC was increased dose- dependently but plasma half-lives remained constant regardless of GC-rhEPO doses. Following SC administration, the plasma concentration increased slowly with half-life of 9.2 hours and reached peak at 8 hours. Mean residence time and bioavailability were 18.2 hours and 44%, respectively. After single IV dose of 100 unit/kg, tissue GC-rhEPO level was higher in bone marrow and spleen, while the depletion rate was slower in liver and bone marrow, indicating the higher affinity of GC-rhEPO to bone marrow. Taken together, the experimental results indicate that GC-rhEPO contained the typical pharmacokinetic properties and the tissue distribution patterns inherent to human erythropoietin.

  • PDF

Formulation and Evaluation of Irinotecan Suppository for Rectal Administration

  • Feng, Haiyang;Zhu, Yuping;Li, Dechuan
    • Biomolecules & Therapeutics
    • /
    • v.22 no.1
    • /
    • pp.78-81
    • /
    • 2014
  • Irinotecan suppository was prepared using the moulding method with a homogeneous blend. A sensitive and specific fluorescence method was developed and validated for the determination of irinotecan in plasma using HPLC. The pharmacokinetics of intravenous administered and rectal administered in rabbits was investigated. Following a single intravenous dose of irinotecan (50 mg/kg), the plasma irinotecan concentration demonstrated a bi-exponential decay, with a rapid decline over 15 min. $C_{max}$, $t_{1/2}$, $AUC_{0-30h}$ and $AUC_{0-{\infty}}$ were $16.1{\pm}2.7g/ml$, $7.6{\pm}1.2h$, $71.3{\pm}8.8{\mu}g{\cdot}h/ml$ and $82.3{\pm}9.5{\mu}g{\cdot}h/ml$, respectively. Following rectal administration of 100 mg/kg irinotecan, the plasma irinotecan concentration reached a peak of $5.3{\pm}2.5{\mu}g/ml$ at 4 h. The $AUC_{0-30h}$ and $AUC_{0-{\infty}}$ were $32.2{\pm}6.2{\mu}g{\cdot}h/ml$ and $41.6{\pm}7.2{\mu}g{\cdot}h/ml$, respectively. It representing ~50.6% of the absolute bioavailability.