• Title/Summary/Keyword: PH regulation

Search Result 27, Processing Time 0.021 seconds

Regulation of the expression of nhaA gene coding $Na^{+}$/$H^{+}$ antiporter A of escherichia coli

  • Seo, Sung-Yum;Lee, Seung-Heon
    • Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.120-125
    • /
    • 1995
  • .betha.-galactosidase activity of Escherichia coli cells containing operon fusion nhaA'-'lacZ was monitored to study the regulation of expression of nhaA gene under various conditions. The expression of the fusion was enhanced only by chemicals containing Na$^{+}$ or Li$^{+}$. This Na$^{+}$ or Li$^{+}$. This Na$^{+}$(Li$^{+}$)-specific enhancement of .betha.-galactosidase activity represented the increase in the rate of synthesis of .betha.-galactosidase rather than the decrease in the breakdown rate. The induction pattern was influenced by copy numbers of the gene. Induction by Na$^{+}$ or Li$^{+}$ was concentration and time dependent, reaching maximum 5-6 fold induction after 2 hours at 0.4-0.5 M for Na$^{+}$ or at 0.25-0.35 M for Li$^{+}$, Although the expression was induced at much lower concentration of Na$^{+}$ at alkaline pH values than at neutral pH in the presence of Na$^{+}$, alkaline pH itself did ot induced the expression of the fusion in the absence of Na$^{+}$. Temperature shift and growth phase of culture did not affect the level of induction.he level of induction.

  • PDF

STUDY OF RESVERATROL AND ITS DERIVATIVES ON THE REGULATION OG GENE EXPRESSION IN MCF-7 CELLS TRANSFECTED WITH EITHER pERE-LUC OR phCYP1A1-LUC

  • Joung, Ki-Eun;Kim, Yeo-Woon;Sheen, Yhun-Yhong
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.111-111
    • /
    • 2001
  • Resveratrol (trans-3,4',5-trihydroxystilbene), which is a polyphenolic compound found in a variety of plants such as grapes and wine, has been reported to have a variety of anti-inflammatory, anti-platelet, and anti-carcinogenic effects. Recently resveratrol of was reported to serve as an estrogen agonist in MCF-7 cells Based on its structural similarity to diethylstilbestrol, a synthetic estrogen, we examined whether resveratrol and its derivatives might be estrogenic using stable MCF-7-ERE cells. Resveratrol functioned as a superagonist at high concentrations (i.e., produced a greater maximal transcriptional response than estradiol) Among the resveratrol derivatives, 10 compounds showed significant estrogenic activity.

  • PDF

Steering-Type Web Position Control of Cold Mills Using QFT (QFT를 이용한 냉간 압연시스템의 조타유도형 웹 위치제어)

  • Lee, Gyu-Jun;Jeong, Jae-Hyo;Kim, Jong-Sik;Choe, Jin-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.31-38
    • /
    • 2002
  • A new steering-type web position control system for cold mills using QFT is presented. The control system features an inner-outer cascaded system in which the inner loop provides the position tracking control of hydraulic system and the outer loop provides the position regulation control of the web. By the sensitivity analysis and computer simulation, it is verified that the proposed control system has better robust stability and performance than the conventional PH) control system.

Involvement of adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1 in diallyl trisulfide-induced cytotoxicity in hepatocellular carcinoma cells

  • Guan, Feng;Ding, Youming;He, Yikang;Li, Lu;Yang, Xinyu;Wang, Changhua;Hu, Mingbai
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.6
    • /
    • pp.457-468
    • /
    • 2022
  • It has been demonstrated that APPL1 (adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1) is involved in the regulation of several growth-related signaling pathways and thus closely associated with the development and progression of some cancers. Diallyl trisulfide (DAT), a garlic-derived bioactive compound, exerts selective cytotoxicity to various human cancer cells through interfering with pro-survival signaling pathways. However, whether and how DAT affects survival of human hepatocellular carcinoma (HCC) cells remain unclear. Herein, we tested the hypothesis of the involvement of APPL1 in DAT-induced cytotoxicity in HCC HepG2 cells. We found that Lys 63 (K63)-linked polyubiquitination of APPL1 was significantly decreased whereas phosphorylation of APPL1 at serine residues remained unchanged in DAT-treated HepG2 cells. Compared with wild-type APPL1, overexpression of APPL1 K63R mutant dramatically increased cell apoptosis and mitigated cell survival, along with a reduction of phosphorylation of STAT3, Akt, and Erk1/2. In addition, DAT administration markedly reduced protein levels of intracellular TNF receptor-associated factor 6 (TRAF6). Genetic inhibition of TRAF6 decreased K63-linked polyubiquitination of APPL1. Moreover, the cytotoxicity impacts of DAT on HepG2 cells were greatly attenuated by overexpression of wild-type APPL1. Taken together, these results suggest that APPL1 polyubiquitination probably mediates the inhibitory effects of DAT on survival of HepG2 cells by modulating STAT3, Akt, and Erk1/2 pathways.

PI(3,4,5)P3 regulates the interaction between Akt and B23 in the nucleus

  • Kwon, Il-Sun;Lee, Kyung-Hoon;Choi, Joung-Woo;Ahn, Jee-Yin
    • BMB Reports
    • /
    • v.43 no.2
    • /
    • pp.127-132
    • /
    • 2010
  • Phosphatidylinositol (3,4,5)-triphosphate ($PIP_3$) is a lipid second messenger that employs a wide range of downstream effector proteins for the regulation of cellular processes, including cell survival, polarization and proliferation. One of the most well characterized cytoplasmic targets of $PIP_3$, serine/threonine protein kinase B (PKB)/Akt, promotes cell survival by directly interacting with nucleophosmin (NPM)/B23, the nuclear target of $PIP_3$. Here, we report that nuclear $PIP_3$ competes with Akt to preferentially bind B23 in the nucleoplasm. Mutation of Arg23 and Arg25 in the PH domain of Akt prevents binding to $PIP_3$, but does not disrupt the Akt/B23 interaction. However, treatment with phosphatases PTEN or SHIP abrogates the association between Akt and B23, indicating that nuclear $PIP_3$ regulates the Akt/B23 interaction by controlling the concentration and subcellular dynamics of these two proteins.

Students' Self-Regulated Learning Strategies in Traditional and Non-Traditional Classroom: A Comparative Study

  • Davaanyam, Tumenbayar;Tserendorj, Navchaa
    • Research in Mathematical Education
    • /
    • v.19 no.1
    • /
    • pp.81-88
    • /
    • 2015
  • This study used a posttest control group design and to find out differences between students' self-regulated learning strategies in traditional and non-traditional classroom. To this end, 131 first year university students within the experimental and control groups took part in the study. While ICT-based approach was used as the main medium of instruction in the experimental group, in the control group the paper-based traditional method was used. A survey adapted from Davaanyam [Davaanyam, T. (2013). The structural relationships among Mongolian students' attitudes toward mathematics, motivational beliefs, self-regulated learning strategies, and mathematics achievement. Ph. D. Dissertation. Jeonju, Jeonbuk, Korea: Chonbuk National Unversity.] was used to gather the data. The results of the study indicated a significant difference between the control and experimental groups in regard with their self-regulated learning. That is to say, the experimental group taught through ICT tools acquired higher levels of self-regulation as compared with the control group instructed through the traditional teaching method.

Emerging roles of PHLPP phosphatases in metabolism

  • Cha, Jong-Ho;Jeong, Yelin;Oh, Ah-Reum;Lee, Sang Bae;Hong, Soon-Sun;Kim, KyeongJin
    • BMB Reports
    • /
    • v.54 no.9
    • /
    • pp.451-457
    • /
    • 2021
  • Over the last decades, research has focused on the role of pleckstrin homology (PH) domain leucine-rich repeat protein phosphatases (PHLPPs) in regulating cellular signaling via PI3K/Akt inhibition. The PKB/Akt signaling imbalances are associated with a variety of illnesses, including various types of cancer, inflammatory response, insulin resistance, and diabetes, demonstrating the relevance of PHLPPs in the prevention of diseases. Furthermore, identification of novel substrates of PHLPPs unveils their role as a critical mediator in various cellular processes. Recently, researchers have explored the increasing complexity of signaling networks involving PHLPPs whereby relevant information of PHLPPs in metabolic diseases was obtained. In this review, we discuss the current knowledge of PHLPPs on the well-known substrates and metabolic regulation, especially in liver, pancreatic beta cell, adipose tissue, and skeletal muscle in relation with the stated diseases. Understanding the context-dependent functions of PHLPPs can lead to a promising treatment strategy for several kinds of metabolic diseases.

Factors Affecting the Distribution of Intellectual Potential and Returns in Kazakhstan

  • KIREYEVA, Anel A.;KANGALAKOVA, Dana M.;AINAKUL, Nazym;TSOY, Alexander
    • Journal of Distribution Science
    • /
    • v.20 no.2
    • /
    • pp.55-64
    • /
    • 2022
  • Purpose: This research is aimed to study the level of the intellectual potential distribution, as well as the correlation between economic growth and key indicators of intellectual potential in each region of Kazakhstan. A review of the conceptual framework shows that there is a large body of research evaluating the level of intellectual potential in different ways based on different factors. Research design, data, and methodology: The research methodology is divided into two groups the integral index method using the normalization of indicators, weighting, and ranking; the method of correlation analysis. By the proposed methodological approaches, were calculated a set of factors affect the distribution of the intellectual potential. Statistics are taken for indicators of development of the intellectual potential for 2011-2020 from the Bureau of National Statistics. Results: Ranking results showed gaps between regions in Kazakhstan by the level of intellectual potential. Correlation analysis results revealed a statistically significant relationship on expenditures on R&D, computer literacy, innovative products, number of PhD students, and cultural and leisure indicators. Conclusions: Based on the obtained results of the intellectual potential level development there were given recommendations for the reproduction and regulation of the intellectual potential in the future.

SKP2 Contributes to AKT Activation by Ubiquitination Degradation of PHLPP1, Impedes Autophagy, and Facilitates the Survival of Thyroid Carcinoma

  • Yuan Shao;Wanli Ren;Hao Dai;Fangli Yang;Xiang Li;Shaoqiang Zhang;Junsong Liu;Xiaobao Yao;Qian Zhao;Xin Sun;Zhiwei Zheng;Chongwen Xu
    • Molecules and Cells
    • /
    • v.46 no.6
    • /
    • pp.360-373
    • /
    • 2023
  • Papillary thyroid carcinoma (PTC) is the most common subtype of thyroid carcinoma. Despite a good prognosis, approximately a quarter of PTC patients are likely to relapse. Previous reports suggest an association between S-phase kinase-associated protein 2 (SKP2) and the prognosis of thyroid cancer. SKP1 is related to apoptosis of PTC cells; however, its role in PTC remains largely elusive. This study aimed to understand the expression and molecular mechanism of SKP2 in PTC. SKP2 expression was upregulated in PTC tissues and closely associated with clinical diagnosis. In vitro and in vivo knockdown of SKP2 expression in PTC cells suppressed cell growth and proliferation and induced apoptosis. SKP2 depletion promoted cell autophagy under glucose deprivation. SKP2 interacted with PH domain leucine-rich repeat protein phosphatase-1 (PHLPP1), triggering its degradation by ubiquitination. Furthermore, SKP2 activates the AKT-related pathways via PHLPP1, which leads to the cytoplasmic translocation of SKP2, indicating a reciprocal regulation between SKP2 and AKT. In conclusion, the upregulation of SKP2 leads to PTC proliferation and survival, and the regulatory network among SKP2, PHLPP1, and AKT provides novel insight into the molecular basis of SKP2 in tumor progression.

Selective miRNA Expression Profile in Chronic Myeloid Leukemia K562 Cell-derived Exosomes

  • Feng, Dan-Qin;Huang, Bo;Li, Jing;Liu, Jing;Chen, Xi-Min;Xu, Yan-Mei;Chen, Xin;Zhang, Hai-Bin;Hu, Long-Hua;Wang, Xiao-Zhong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7501-7508
    • /
    • 2013
  • Background: Chronic myeloid leukemia (CML) is a myeloproliferative disorder of hematopoietic stem cell scarrying the Philadelphia (Ph) chromosome and an oncogenic BCR-ABL1 fusion gene. The tyrosine kinase inhibitor (TKI) of BCR-ABL1 kinase is a treatment of choice for control of CML. Objective: Recent studies have demonstrated that miRNAs within exosomes from cancer cells play crucial roles in initiation and progression. This study was performed to assess miRNAs within exosomes of K562 cells. Methods: miRNA microarray analysis of K562 cells and K562 cell-derived exosomes was conducted with the 6th generation miRCURYTM LNA Array (v.16.0). Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were also carried out. GO terms and signaling pathways were categorized into 66 classes (including homophilic cell adhesion, negative regulation of apoptotic process, cell adhesion) and 26 signaling pathways (such as Wnt). Results: In exosomes, 49 miRNAs were up regulated as compared to K562 cells, and two of them were further confirmed by quantitative real-time PCR. There are differentially expressed miRNAs between K562 cell derived-exosomes and K562 cells. Conclusion: Selectively expressed miRNAs in exosomes may promote the development of CML via effects on interactions (e.g. adhesion) of CML cells with their microenvironment.