• Title/Summary/Keyword: PGSFR

Search Result 35, Processing Time 0.02 seconds

Drop Performance Test of Control Rod Assembly for Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR 제어봉집합체 낙하성능시험)

  • Lee, Young Kyu;Kim, Hoe Woong;Lee, Jae Han;Koo, Gyeong Hoi;Kim, Jong Bum;Kim, Sung Kyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.134-140
    • /
    • 2016
  • The Control Rod Assembly (CRA) controls the reactor power by adjusting its position in the reactor core during normal operation and should be quickly inserted into the reactor core by free drop under scram condition to shut down chain reactions. Therefore, the drop time of the CRA is one of important factors for the safety of the nuclear reactor and must be experimentally verified. This study presents the drop performance test of the CRA which has been conceptually designed for the Proto-type Generation IV Sodium-cooled Fast Reactor. During the test, the CRA was free dropped from a height of 1 m under different flow rate conditions and its drop time was measured. The results showed that the drop time of the CRA increased as the flow rate increased; the average drop times of the CRA were approximately 1.527 seconds, 1.599 seconds and 1.676 seconds at 0%, 100% and 200% of design flow rates, respectively.

Validation of the correlation-based aerosol model in the ISFRA sodium-cooled fast reactor safety analysis code

  • Yoon, Churl;Kim, Sung Il;Lee, Sung Jin;Kang, Seok Hun;Paik, Chan Y.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3966-3978
    • /
    • 2021
  • ISFRA (Integrated SFR Analysis Program for PSA) computer program has been developed for simulating the response of the PGSFR pool design with metal fuel during a severe accident. This paper describes validation of the ISFRA aerosol model against the Aerosol Behavior Code Validation and Evaluation (ABCOVE) experiments undertaken in 1980s for radionuclide transport within a SFR containment. ABCOVE AB5, AB6, and AB7 tests are simulated using the ISFRA aerosol model and the results are compared against the measured data as well as with the simulation results of the MELCOR severe accident code. It is revealed that the ISFRA prediction of single-component aerosols inside a vessel (AB5) is in good agreement with the experimental data as well as with the results of the aerosol model in MELCOR. Moreover, the ISFRA aerosol model can predict the "washout" phenomenon due to the interaction between two aerosol species (AB6) and two-component aerosols without strong mutual interference (AB7). Based on the theory review of the aerosol correlation technique, it is concluded that the ISFRA aerosol model can provide fast, stable calculations with reasonable accuracy for most of the cases unless the aerosol size distribution is strongly deformed from log-normal distribution.

Effects of decay heat and cooling condition on the reactor pool natural circulation under RVACS operation in a water 2-D slab model

  • Min Ho Lee ;Dong Wook Jerng ;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1821-1829
    • /
    • 2023
  • The temperature distribution of the reactor pool under natural circulation induced by the RVACS operation was experimentally studied. According to the Bo' based similarity law, which could reproduce the temperature distribution of the working fluid under natural circulation, SINCRO-2D facility was designed based on the PGSFR. It was reduced to 1 : 25 in length scale, having water as a simulant of the sodium, which is the original working fluid. In general, temperature was stratified, however, effect of the natural circulation flow could be observed by the entrainment of the stratified temperature. Relative cooling contribution of the upper plenum (narrow gap) and lower plenum was approximately 0.2 and 0.8, respectively. In the range of decay heat from 0.2% to 1.0%, only the magnitude of the temperature was changed, while the normalized temperature maintained. Boundary temperature distribution change made a global temperature offset of the pool, without a significant local change. Therefore, the decay heat and cooling boundary condition had no significant effect on temperature distribution characteristics of the pool within the given range of the decay heat and boundary temperature distribution.

A validation study of the SLTHEN code for hexagonal assemblies of wire-wrapped pins using liquid metal heating experiments

  • Sun Rock Choi;Junkyu Han;Huee-Youl Ye;Jonggan Hong;Won Sik Yang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1125-1134
    • /
    • 2024
  • This paper presents a validation study of the subchannel analysis code SLTHEN used for the core thermal-hydraulic design of the Prototype Gen-IV sodium-cooled fast reactor (PGSFR). To assess the performance of the ENERGY model of SLTHEN, four liquid metal heating experiments conducted by ORNL, WARD, and KIT with hexagonal assemblies of wire-wrapped rod bundles were analyzed. These experiments were performed with 19-and 61-pin bundles and varying power distributions of axial and radial peaking factors up to 1.4 and 3.0, respectively. The coolant subchannel temperatures measured at different axial locations were compared with the SLTHEN predictions with the Novendstern, Chiu-Rohsenow-Todreas (CRT), and Cheng-Todreas (CT) correlations for flow split and mixing in wire-wrapped pin bundles. The results showed that the SLTHEN predicts the measured subchannel temperatures reasonably well with root-mean-square errors of ~10 % and maximum errors of ~20 %. It was also observed that the CRT and CT correlations consistently outperform the Novendstern correlation.

Preliminary Leak-before Break Assessment of Intermediate Heat Transport System Hot-Leg of a Prototype Generation IV Sodium-cooled Fast Reactor (소듐냉각고속로 원형로 중간열전달계통 고온배관의 파단전누설 예비평가)

  • Lee, Sa Yong;Kim, Nak Hyun;Koo, Gyeong Hoi;Kim, Sung Kyun;Kim, Yoon Jea
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.126-133
    • /
    • 2016
  • Recently, the research and development of Sodium-cooled Fast Reactors (SFRs) have made progresses. However, liquid sodium, the coolant of an SFR, is chemically unstable and sodium fire can be occurred when liquid sodium leaks from sodium pipe. To reduce the damage by the sodium fire, many fire walls and fire extinguishers are needed for SFRs. LBB concept in SFR might reduce the scale of sodium fire and decrease or eliminate fire walls and fire extinguishers. Therefore, LBB concept can contribute to improve economic efficiency and to strengthen defense-in depth safety. The LBB assessment procedure has been well established, and has been used significantly in light water reactors (LWRs). However, an LBB assessment of an SFR is more complicated because SFRs are operated in elevated temperature regions. In such a region, because creep damage may occur in a material, thereby growing defects, an LBB assessment of an SFR should consider elevated temperature effects. The procedure and method for this purpose are provided in RCC-MRx A16, which is a French code. In this study, LBB assessment was performed for PGSFR IHTS hot-leg pipe according to RCC-MRx A16 and the applicability of the code was discussed.