• 제목/요약/키워드: PFC2D

검색결과 119건 처리시간 0.022초

2차원 수리-역학적 연계 입자유동코드를 사용한 가스생산 유발지진 모델링: 네덜란드 그로닝엔 천연가스전에서의 지진 사례 연구 (Modelling Gas Production Induced Seismicity Using 2D Hydro-Mechanical Coupled Particle Flow Code: Case Study of Seismicity in the Natural Gas Field in Groningen Netherlands)

  • 윤정석;;;;;민기복
    • 터널과지하공간
    • /
    • 제33권1호
    • /
    • pp.57-69
    • /
    • 2023
  • 본 연구에서는 2차원 수리-역학적연계 개별요소모델링(DEM)을 사용하여 네델란드 그로닝엔(Groningen) 천연가스전 저류층의 유발지진을 모사하였다. 수치해석 코드는 ITASCA社의 상용프로그램인 PFC2D (Particle Flow Code 2D)를 사용하였으며 본 수치해석 연구에 적용하기 위해 수리-역학적 연계 모델 외 1) 비균질 저류층 압력분포 초기화, 2) 비선형 압력-시간이력 경계조건, 3) 국소 응력 분포 계산 등의 개별모듈을 추가개발, 적용하였다. 그로닝엔 가스전에 분포하는 복잡한 단층 형상을 포함하는 40 × 50 km2 크기의 2차원 모델을 생성하였고, 1960년부터 2020년까지 약 60년 동안의 가스생산, 즉 압 력저하로 인한 단층의 파괴거동을 모사하였다. 유발지진의 시공간적 발생을 수치해석모델로 재현하였고 그 발생 메커니즘을 규명하였다. 또한 저류층 압축으로부터 지표에서의 지반침하의 분포를 예측하였고 그로닝엔에서의 실측자료 사이에 유사성을 확인할 수 있었다. 이를 통해 본 연구에서 소개한 2차원 수리-역학적연계 개별요소모델링(DEM)의 복잡한 지질조건과 수리-역학적 연계 프로세스에 의한 단층거동을 구현할 수 있는 툴(tool)로서의 활용성을 확인하였다.

Study of cracks in compressed concrete specimens with a notch and two neighboring holes

  • Vahab, Sarfarazi;Kaveh, Asgari;Shirin, Jahanmiri;Mohammad Fatehi, Marji;Alireza Mohammadi, Khachakini
    • Advances in concrete construction
    • /
    • 제14권5호
    • /
    • pp.317-330
    • /
    • 2022
  • This paper investigated computationally and experimentally the interaction here between a notch as well as a micropore under uniaxial compression. Brazilian tensile strength, uniaxial tensile strength, as well as biaxial tensile strength are used to calibrate PFC2d at first. Then, uniaxial compression test was conducted which they included internal notch and micro pore. Experimental and numerical building of 9 models including notch and micro pore were conducted. Model dimensions of models are 10 cm × 10 cm × 5 cm. Joint length was 2 cm. Joints angles were 30°, 45° and 60°. The position of micro pore for all joint angles was 2cm upper than top of the joint, 2 cm upper than middle of joint and 2 cm upper than the joint lower tip, discreetly. The numerical model's dimensions were 5.4 cm × 10.8 cm. The fractures were 2 cm in length and had angularities of 30, 45, and 60 degrees. The pore had a diameter of 1 cm and was located at the top of the notch, 2 cm above the top, 2 cm above the middle, and 2 cm above the bottom tip of the joint. The uniaxial compression strength of the model material was 10 MPa. The local damping ratio was 0.7. At 0.016 mm per second, it loaded. The results show that failure pattern affects uniaxial compressive strength whereas notch orientation and pore condition impact failure pattern. From the notch tips, a two-wing fracture spreads almost parallel to the usual load until it unites with the sample edge. Additionally, two wing fractures start at the hole. Both of these cracks join the sample edge and one of them joins the notch. The number of wing cracks increased as the joint angle rose. There aren't many AE effects in the early phases of loading, but they quickly build up until the applied stress reaches its maximum. Each stress decrease was also followed by several AE effects. By raising the joint angularities from 30° to 60°, uniaxial strength was reduced. The failure strengths in both the numerical simulation and the actual test are quite similar.

이축압축 조건에서 공동이 존재하는 유사 절리암반 모델의 파괴 거동 (Fracture Behaviors of Jointed Rock Model Containing an Opening Under Biaxial Compression Condition)

  • 사공명;유재호;박두희;이준석
    • 한국지반공학회논문집
    • /
    • 제25권10호
    • /
    • pp.17-30
    • /
    • 2009
  • 지하에 공동을 건설하는 터널 공사의 경우 초기 응력의 집중 및 발파와 같은 시공단계에서의 과도한 에너지의 적용으로 인하여 주변 암반에 손상을 발생시킨다. 이러한 손상의 발생은 터널에 작용하는 하중 및 터널 주변 암반의 흐름조건에 상당한 영향을 끼친다. 이러한 이유로 터널 주변에 발생하는 손상구간에 대하여 다양한 연구가 수행되었다. 본 연구에서는 유사암석으로 제작된 공동이 존재하는 절리모델의 이축압축실험을 통하여 공동주변의 손상발생을 연구하였다. 절리면은 수평면과 $30^{\circ}$, $45^{\circ}$, $60^{\circ}$의 조건으로 형성되었으며, 초조강시멘트 재료를 이용하여 유사절리모델을 제작하였다. 이축압축 실험결과 공동주변에서는 절리면에 수직한 방향으로 인장균열의 발생이 관측되었으며, 균열의 진행으로 인하여 암반블록이 형성되었으며, 진행하는 인장균열이 다른 절리면에 도달하여 암반블록이 완전히 형성된 경우 탈락하는 과정을 보였다. 이러한 인장균열의 진전은 절리면의 각도에 따라 상이한데 절리면의 각도가 클수록 안정적이며 진행성의 균열 진전 양상이 관측되었다. 이러한 인장균열의 발달은 절리면으로 구성된 암편을 보로 가정 할 경우 공동의 곡률로 인한 기하학적 형상의 불규칙성으로 인하여 모멘트가 작용하는 것으로 판단된다. 이상의 실험결과를 입자요소해석 방법을 기반으로 하는 PFC 2D를 이용하여 모사하였다. 해석결과 실험에서 관측한 바와 같이 절리면 각도가 작을수록 손상대의 폭은 넓어지며 인장균열의 진행에 의한 암반블록의 형성이 관측되었다. 또한 상호작용이 발생하는 균열을 조사한 결과 수치해석에서도 절리면의 각도가 작은 조건에서 진행성의 파괴가 나타났다.

Numerical simulation of tensile failure of concrete using Particle Flow Code (PFC)

  • Haeri, Hadi;Sarfarazi, Vahab
    • Computers and Concrete
    • /
    • 제18권1호
    • /
    • pp.39-51
    • /
    • 2016
  • This paper considers the tensile strength of concrete samples in direct, CTT, modified tension, splitting and ring tests using both of the experimental tests and numerical simulation (particle flow code 2D). It determined that which one of indirect tensile strength is close to direct tensile strength. Initially calibration of PFC was undertaken with respect to the data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, validation of the simulated models in four introduced tests was also cross checked with the results from experimental tests. By using numerical testing, the failure process was visually observed and failure patterns were watched to be reasonable in accordance with experimental results. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Tensile strength of concrete in direct test was less than other tests results. Tensile strength resulted from modified tension test was close to direct test results. So modified tension test can be a proper test for determination of tensile strength of concrete in absence of direct test. Other advantages shown by modified tension tests are: (1) sample preparation is easy and (2) the use of a simple conventional compression press controlled by displacement compared with complicate device in other tests.

Physical test and PFC2D simulation of the failure mechanism of echelon joint under uniaxial compression

  • Sarfarazi, V.;Abharian, S.;Ghalam, E. Zarrin
    • Computers and Concrete
    • /
    • 제27권2호
    • /
    • pp.99-109
    • /
    • 2021
  • Experimental and discrete element methods were used to investigate the effects of echelon non-persistent joint on the failure behaviour of joint's bridge area under uniaxial compressive test. Concrete samples with dimension of 150 mm×100 mm×50 mm were prepared. Uniaxial compressive strength and tensile strength of concrete were 14 MPa and 1MPa, respectivly. Within the specimen, three echelon non-persistent notches were provided. These joints were distributed on the three diagonal plane. the angle of diagonal plane related to horizontal axis were 15°, 30° and 45°. The angle of joints related to diagonal plane were 30°, 45°, 60°. Totally, 9 different configuration systems were prepared for non-persistent joint. In these configurations, the length of joints were taken as 2 cm. Similar to those for joints configuration systems in the experimental tests, 9 models with different echelon non-persistent joint were prepared in numerical model. The axial load was applied to the model by rate of 0.05 mm/min. the results show that the failure process was mostly governed by both of the non-persistent joint angle and diagonal plane angle. The compressive strengths of the specimens were related to the fracture pattern and failure mechanism of the discontinuities. It was shown that the shear behaviour of discontinuities is related to the number of the induced tensile cracks which are increased by increasing the joint angle. The strength of samples increase by increasing both of the joint angle and diagonal plane angle. The failure pattern and failure strength are similar in both methods i.e. the experimental testing and the numerical simulation methods.

Effects of number and angle of T Shape non persistent cracks on the failure behavior of samples under UCS test

  • Sarfarazi, V.;Asgari, K.;Maroof, S.;Fattahi, Sh
    • Computers and Concrete
    • /
    • 제29권1호
    • /
    • pp.31-45
    • /
    • 2022
  • Experimental and numerical simulation were used to investigate the effects of angle and number of T shape non-persistent crack on the shear behaviour of crack's bridge area under uniaxial compressive test. concrete samples with dimension of 150 mm×150 mm×40 mm were prepared. Within the specimen, T shape non-persistent notches were provided. 16 different configuration systems were prepared for T shape non-persistent crack based on two and three cracks. In these configurations, the length of cracks were taken as 4 cm and 2 cm based on the cracks configuration systems. The angle of larger crack related to horizontal axis was 0°, 30°, 60° and 90°. Similar to cracks configuration systems in the experimental tests, 28 models with different T shape non-persistent crack angle were prepared in numerical model. The length of cracks were taken as 4 cm and 2 cm based on the cracks configuration systems. The angle of larger crack related to horizontal axis was 0°, 15°, 30°, 45°, 60°, 75° and 90°. Tensile strength of concrete was 1 MPa. The axial load was applied to the model. Displacement loading rate was controlled to 0.005 mm/s. Results indicated that the failure process was significantly controled by the T shape non-persistent crack angle and crack number. The compressive strengths of the specimens were related to the fracture pattern and failure mechanism of the discontinuities. Furthermore, it was shown that the compressive behaviour of discontinuities is related to the number of the induced tensile cracks which are increased by increasing the crack number and crack angle. The strength of samples decreased by increasing the crack number. In addition, the failure pattern and failure strength are similar in both methods i.e. the experimental testing and the numerical simulation methods (PFC2D).

Mechanism of failure in the Semi-Circular Bend (SCB) specimen of gypsum-concrete with an edge notch

  • Fu, Jinwei;Sarfarazi, Vahab;Haeri, Hadi;Marji, Mohammad Fatehi;Guo, Mengdi
    • Structural Engineering and Mechanics
    • /
    • 제81권1호
    • /
    • pp.81-91
    • /
    • 2022
  • The effects of interaction between concrete-gypsum interface and edge crack on the failure behavior of the specimens in senicircular bend (SCB) test were studied in the laboratory and also simulated numerically using the discrete element method. Some quarter circular specimens of gypsum and concrete with 5 cm radii and hieghts were separately prepared. Then the semicircular testing specimens were made by attaching one gypsum and one concrete sample to one another using a special glue and one edge crack is produced (in the interface) by do not using the glue in that part of the interface. The tensile strengths of concrete and gypsum samples were separately measured as 2.2 MPa and 1.3 MPa, respectively. during all testing performances a constant loading rate of 0.005 mm/s were stablished. The proposed testing method showed that the mechanism of failure and fracture in the brittle materials were mostly governed by the dimensions and number of discontinuities. The fracture toughnesses of the SCB samples were related to the fracture patterns during the failure processes of these specimens. The tensile behaviour of edge notch was related to the number of induced tensile cracks which were increased by decreasing the joint length. The fracture toughness of samples was constant by increasing the joint length. The failure process and fracture pattern in the notched semi-circular bending specimens were similar for both methods used in this study (i.e., the laboratory tests and the simulation procedure using the particle flow code (PFC2D)).

3차원 개별요소해석 시의 초기 모델 및 재료 스케일 영향 (Scale Effects of Initial Model and Material on 3-Dimensional Distinct Element Simulation)

  • 전제성;신동훈;하익수
    • 한국지반환경공학회 논문집
    • /
    • 제12권7호
    • /
    • pp.57-65
    • /
    • 2011
  • 본 연구에서는 3차원 개별요소해석 코드인 Particle Flow Code, $PFC^{3D}$(Itasca)를 이용, 조립재료의 실내 삼축압축시험에 대한 개별요소 수치 모델링을 수행하였으며, 해석 모델과 개별요소를 대상으로 다양한 상사 조건에 대한 개별요소 수치 모델링을 수행, 그 결과를 통해 각각의 스케일 조건이 최종 수치 모델링 결과에 미치는 영향을 분석하였다. 3차원 개별요소 수치 모델링은 기존 2차원 모델링 대비 별도의 간극률 환산 없이 정확한 초기 조건 구현이 가능했으며, 응력-변형 및 체적변화 거동, 강도정수등에 있어 실내시험 결과와 유사한 수치 해석적 예측이 가능하였다. 해석 모델과 개별요소에 대한 다양한 상사비 조건별 수치 모델링 결과, 3차원 해석 시의 안정적 예측결과 도출 및 수치 시험실 활용에 대한 적정성을 확보하되, 해석시간 단축 및 해석 효율성 확보를 위해서는 해석 모델과 개별요소에 대한 적정 상사비 결정이 필요함을 알 수 있었다. 해석 모델의 크기와 개별요소의 입경크기를 변화시켜 개별요소 수치모델링을 수행한 결과, 대부분의 경우 전체적인 응력-변형 거동에 차이가 발생하였지만, 점착력과 내부 마찰각의 강도정수는 $D_{mod}/D_{gmax}$ < 10 조건에 유사한 결과를 보였으며, 개별요소 방법이 수치 시험실 기법을 이용한 강도정수 산정에 효과적으로 적용될 수 있음을 확인할 수 있었다.

Direct and indirect methods for determination of mode I fracture toughness using PFC2D

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Computers and Concrete
    • /
    • 제20권1호
    • /
    • pp.39-47
    • /
    • 2017
  • In this paper, mode I fracture toughness of rock was determined by direct and indirect methods using Particle Flow Code simulation. Direct methods are compaction tension (CT) test and hollow centre cracked quadratic sample (HCCQS). Indirect methods are notched Brazilian disk (NBD) specimen, the semi-circular bend (SCB) specimen, hollow centre cracked disc (HCCD), the single edge-notched round bar in bending (SENRBB) specimen and edge notched disk (END). It was determined that which one of indirect fracture toughness values is close to direct one. For this purpose, initially calibration of PFC was undertaken with respect to data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, the simulated models in five introduced indirect tests were cross checked with the results from direct tests. By using numerical testing, the failure process was visually observed. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Mode I fracture toughness of rock in direct test was less than other tests results. Fracture toughness resulted from semi-circular bend specimen test was close to direct test results. Therefore semi-circular bend specimen can be a proper test for determination of Mode I fracture toughness of rock in absence of direct test.

EVALUATION OF SHEAR BEHAVIOR OF LARGE GRANULAR MATERIALS WITH DIFFERENT PARTICLE SIZES BY TRIAXIAL TEST AND NUMERICAL SIMULATION

  • Kim, Bum-Joo;Sagong, Myung
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회 3차
    • /
    • pp.55-60
    • /
    • 2010
  • Rockfill zones in CFRD consist typically of large granular materials, usually the maximum particle size up to several meters, which makes laboratory testing to determine the mechanical properties of rockfill difficult. Commonly, the design strength of the rockfills is obtained by scaling down the original rockfill materials and performing laboratory strength tests for the reduced size materials. The objective of the present study is to investigate the effect of particle size on the shear behavior and the strength for granular materials. A series of large-scale triaxial tests was conducted on large granular materials with the maximum particle size varying from 20 to 50mm. The test results showed that overall shear behaviors were similar between the samples with different particle sizes while there were slight differences in the magnitudes of the peak shear stress between the samples. In addition, a simulation of the granular material with the max. particle size of 20mm was performed using DEM code, $PFC^{2D}$, and compared with the test results. The deviatoric stress versus strain behaviors of experimental and numerical tests were found to be matched well up to the peak stress state.

  • PDF